首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3291篇
  免费   140篇
  国内免费   322篇
  2024年   4篇
  2023年   32篇
  2022年   41篇
  2021年   68篇
  2020年   73篇
  2019年   80篇
  2018年   61篇
  2017年   68篇
  2016年   69篇
  2015年   84篇
  2014年   113篇
  2013年   328篇
  2012年   121篇
  2011年   137篇
  2010年   102篇
  2009年   217篇
  2008年   196篇
  2007年   193篇
  2006年   142篇
  2005年   145篇
  2004年   125篇
  2003年   131篇
  2002年   101篇
  2001年   103篇
  2000年   87篇
  1999年   85篇
  1998年   88篇
  1997年   80篇
  1996年   60篇
  1995年   68篇
  1994年   82篇
  1993年   69篇
  1992年   65篇
  1991年   45篇
  1990年   44篇
  1989年   41篇
  1988年   33篇
  1987年   30篇
  1986年   29篇
  1985年   19篇
  1984年   23篇
  1983年   3篇
  1982年   12篇
  1981年   11篇
  1980年   13篇
  1979年   8篇
  1978年   6篇
  1977年   9篇
  1976年   9篇
排序方式: 共有3753条查询结果,搜索用时 15 毫秒
11.
Pyrimidine biosynthesis was investigated in Pseudomonas cepacia ATCC 17759. The presence of the de novo pyrimidine biosynthetic pathway enzyme activities was confirmed in this strain. Following transposon mutagenesis of the wild-type cells, a mutant strain deficient for orotidine 5-monophosphate decarboxylase activity (pyrF) was isolated. Uracil, cytosine or uridine supported the growth of this mutant. Uracil addition to minimal medium cultures of the wild-type strain diminished the levels of the de novo pyrimidine biosynthetic enzyme activities, while pyrimidine limitation of the mutant cells increased those de novo enzyme activities measured. It was concluded that regulation of pyrimidine biosynthesis at the lelel of enzyme synthesis in P. cepacia was present. Aspartate transcarbamoylase activity was found to be regulated in the wild-type cells. Its activity was shown to be controlled in vitro by inorganic pyrophosphate, adenosine 5-triphosphate and uridine 5-phosphate.  相似文献   
12.
A strain of Pseudomonas putida was isolated that was able to degrade 2-chloroethanol. The degradation proceeded via 2-chloroacetaldehyde and chloroacetate to glycolate. In crude extracts the enzymes for this degradation pathway could be detected. All enzymes proved to be inducible. The dehalogenase that catalyzed the dehalogenation of chloroacetate to glycolate was further characterized. It consisted of a single polypeptide chain with a molecular mass of 28 kDa. After induction the dehalogenase was expressed at a high level. In a mutant resistant to high concentrations of 2-chloroethanol the dehalogenase was no longer expressed. The mechanism of resistance seemed to be due to the inability to convert chloroacetate and export of this compound out of the cell.Non-standard abbreviations CEO 2-chloroethanol - DCPIP 2,6-dichlorophenolindophenol - FPLC fast protein liquid chromatography - PAGE polyacrylamide gelelectrophoresis - PES phenazine ethosulfate - PMS phenazine methosulfate - PQQ pyrroloquinoline quinone  相似文献   
13.
A Pseudomonas cepacia, designated strain BRI6001, was isolated from peat by enrichment culture using 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. BRI6001 grew at up to 13 mM 2,4-D, and degraded 1 mM 2,4-D at an average starting population density as low as 1.5 cells/ml. Degradation was optimal at acidic pH, but could also be inhibited at low pH, associated with chloride release from the substrate, and the limited buffering capacity of the growth medium. The only metabolite detected during growth on 2,4-D was 2,4-dichlorophenol (2,4-DCP), and degradation of the aromatic nucleus was by intradiol cleavage. Growth lag times prior to the on-set of degradation, and the total time required for degradation, were linearly related to the starting population density and the initial 2,4-D concentration. BRI6001, grown on 2,4-D, oxidized a variety of structurally similar chlorinated aromatic compounds accompanied by stoichiometric chloride release.  相似文献   
14.
Summary In iron-deficient conditions,Pseudomonas aeruginosa ATCC 15692 synthesizes two major siderophores, pyoverdins Pa and pyoverdin Pa B. Two other compounds, pyoverdin Pa A (occurring from hydrolysis of pyoverdin Pa during the culture) and pyoverdin Pa C (occurring artifactually during the purification procedure) were also isolated. All these compounds possess the same partly cyclic peptide chain wherel-Orn(OH · HCO) isN -formyl,N -hydroxy-l-ornithine. The chain is bound to a chromophore derived from 2,3-diamino-6,7-dihydroxyquinoline and having the (S) configuration. The four pyoverdins differ only in the acyl substituent bound to the nitrogen atom bound to carbon C3 of the chromophore. This is succinamide (pyoverdin Pa), succinic acid (pyoverdin Pa A), methyl succinate (pyoverdin Pa C) and 2-oxoglutaric acid (pyoverdin Pa B). The complete1H- and13CNMR assignments, using two-dimensional total correlation NMR spectroscopy (TOCSY) and rotating-frame Overhauser enhancement spectroscopy (ROESY) procedures, as well as1H-13C correlations, are reported. The complete sequence of the peptide using CH-NH correlations was achieved by NMR and confirmed the partly cyclic structure earlier reported using fast-atom-bombardment mass spectrometry (FAB-MS) on the siderophores and their dansylated fragments [Briskot G, Taraz K, Budzikiewicz H (1989)Liebigs Ann Chem: 375–384]. The use of these NMR procedures appears to be a tool of choice and a complementary approach to FAB-MS in the structure determination of some complex pyoverdins.Abbreviations Ser serine - Arg arginine - Thr ethreonine - Lys lysine - OHOrn N -hydroxyornithine - Chr chromophore  相似文献   
15.
The lipopolysaccharides (LPS) of a rough (R) and a smooth (S) strain of Pseudomonas syringae pv. phaseolicola were analysed. The S-LPS revealed markedly more rhamnose and fucose, but less glucose, than the R-LPS. The presence of 3-O-methyl-rhamnose (acofriose) in the S-LPS was confirmed by cochromatography with authentic acofriose. SDS polyacrylamide gel electrophoresis of the S-LPS demonstrated a cluster of regularly spaced high molecular weight fractions, which was almost lacking in the R-LPS. The main fatty acids of the lipid A of both LPS species were 3-OH-10:0,3-OH-12:0,2-OH-12:0, and 12:0. Two N-linked diesters were demonstrated: 3-O(12:0)-12:0 and 3-O(2-OH-12:0)-12:0. S-LPS was subjected to mild hydrolysis and the degraded polysaccharide separated into three fractions by gel permeation chromatography on a Fractogel TSK HW-50 column. Fraction I, representing nearly only the O-specific side chain, consisted of rhamnose and fucose in a molar ratio of 4:1, with 4% of the rhamnose being 3-O-methylated (acofriose). Fraction II, representing mostly core material, was composed of glucose, rhamnose, heptose, glucosamine, galactosamine, alanine, and a still unidentified amino compound, in an approximate molar ratio of 3:1:1:1:1:1:1, and KDO. Fraction III consisted of released monomers and salts. The LPS was highly phosphorylated (3.28% phosphorus in the core fraction). The thus characterized composition of the LPS O-chain seems to be unique for the pathovar phaseolicola of P. syringae, although many similarities exist to other pathovars as well as to other bacterial species.Abbreviations LPS lipopolysacchairdes - GC/MS combined gas liquid chromatography-mass spectrometry - HVE high voltage electrophoresis - KDO 2-keto-3-deoxyoctonic acid - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecylsulfate P.s. pv. phaseolicola is termed P. phaseolicola in the text  相似文献   
16.
Degradation of diarylethane structures by Pseudomonas fluorescens biovar I   总被引:2,自引:0,他引:2  
Pseudomonas fluorescens biovar I was isolated from a pulp mill effluent based on its ability to grow on synthetic media containing 1,2-diarylethane structures as the sole carbon and energy source. Analysis of samples taken from cultures of this strain in benzoin or 4,4-dimethoxybenzoin (anisoin), showed that cleavage between the two aliphatic carbons takes place prior to ring fission. Intermonomeric cleavage was also obtained with crude extracts. Substrates of this reaction were only those 1,2-diarylethane compounds that supported growth of the bacterium. The purification and partial characterization of an enzyme that catalyzes the NADH-dependent reduction of the carbonyl group of benzoin and anisoin is also reported.  相似文献   
17.
Thirteen bacteria were isolated on D-4-hydroxyphenylglycine as sole carbon and energy source. Seven strains transaminated only the D-enantiomer while the other six isolates transaminated both enantiomers of 4-hydroxyphenylglycine. One of the six strains utilizing both enantiomers was characterized as a Pseudomonas putida. This strain, MW27, employed two enantioselective transaminases, to catalyze the initial step in the metabolism of DL-4-hydroxyphenylglycine. The product of the transamination, 4-hydroxyphenylglyoxylate, was further metabolized via 4-hydroxybenzaldehyde and 4-hydroxybenzoate to protocatechuate. Preliminary results indicate that both transaminases are co-ordinately synthesized together with the 4-hydroxyphenylglyoxylate decarboxylase and the NADP+-dependent 4-hydroxybenzaldehyde dehydrogenase.  相似文献   
18.
Evidence for the existence of an energy-dependent urea permease was found for Alcaligenes eutrophus H16 and Klebsiella pneumoniae M5a1 by studying uptake of 14C-urea. Since intracellular urea was metabolized immediately, uptake did not result in formation of an urea pool. Evidence is based on observations that the in vivo urea uptake and in vitro urease activity differ significantly with respect to kinetic parameters, temperature optimum, pH optimum, response towards inhibitors and regulation. The K m for urea uptake was 15–20 times lower (38 M and 13 M urea for A. eutrophus and K. pneumoniae, respectively) than the K m of urease for urea (650 M and 280 M urea), the activity optimum for A. eutrophus was at pH 6.0 and 35°C for the uptake and pH 9.0 and 65°C for urease. Uptake but not urease activity in both organisms strongly decreased upon addition of inhibitors of energy metabolism, while in K. pneumoniae, potent inhibitors of urease (thiourea and hydroxyurea) did not affect the uptake process. Significant differences in the uptake rates were observed during growth with different nitrogen sources (ammonia, nitrate, urea) or in the absence of a nitrogen source; this suggested that a carrier is involved which is subject to nitrogen control. Some evidence for the presence of an energy-dependent uptake of urea was also obtained in Pseudomonas aeruginosa DSM 50071 and Providencia rettgeri DSM 1131, but not in Proteus vulgaris DSM 30118 and Bacillus pasteurii DSM 33.Non-standard abbreviations CCCP Carbonylcyanide-m-chlorphenylhydrazone - DCCD dicyclohexylcarbodiimide - DNP 2,4-dinitrophenole  相似文献   
19.
Most Pseudomonas aeruginosa PAO mutants which were unable to utilize l-arginine as the sole carbon and nitrogen source (aru mutants) under aerobic conditions were also affected in l-ornithine utilization. These aru mutants were impaired in one or several enzymes involved in the conversion of N2-succinylornithine to glutamate and succinate, indicating that the latter steps of the arginine succinyltransferase pathway can be used for ornithine catabolism. Addition of aminooxyacetate, an inhibitor of the N2-succinylornithine 5-aminotransferase, to resting cells of P. aeruginosa in ornithine medium led to the accumulation of N2-succinylornithine. In crude extracts of P. aeruginosa an ornithine succinyltransferase (l-ornithine:succinyl-CoA N2-succinyltransferase) activity could be detected. An aru mutant having reduced arginine succinyltransferase activity also had correspondingly low levels of ornithine succinyltransferase. Thus, in P. aeruginosa, these two activities might be due to the same enzyme, which initiates aerobic arginine and ornithine catabolism.Abbreviations OAT ornithine 5-aminotransferase - SOAT N2-succinylornithine 5-aminotransferase - Oru ornithine utilization - Aru arginine utilization  相似文献   
20.
Abstract Two denitrifying bacteria ( Pseudomonas chlororaphis and P. aureofaciens ) and a plant (barley, Hordeum vulgare ) were used to study the effect of O2 concentration on denitrification and NO3 uptake by roots under well-defined aeration conditions. Bacterial cells in the early stationary phase were kept in a chemostat vessel with vigorous stirring and thus a uniform O2 concentration in the solution. Both Pseudomonads lacked N2O reductase and so total denitrification could be directly measured as N2O production.
Denitrification decreased to 6–13% of the anaerobic rate at 0.01% O2 saturation (0.14 μM O2) and was totally inhibited at 0.04% O2 saturation (0.56 μM O2). In this well-mixed system denitrification was 10-times more oxygen sensitive than stated in earlier reports. Uptake of nitrate by plants was measured in the same system under light. The NO3 uptake rate decreased gradually from a maximum in 21% O2-saturated medium (air saturated) to zero at 1.6% O2 saturation (22.4 μM O2). Owing to the very different non-overlapping oxygen requirements of the two processes, direct competition for nitrate between plant roots and denitrifying bacteria cannot occur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号