首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1272篇
  免费   119篇
  国内免费   34篇
  2024年   5篇
  2023年   15篇
  2022年   28篇
  2021年   26篇
  2020年   52篇
  2019年   56篇
  2018年   74篇
  2017年   62篇
  2016年   30篇
  2015年   38篇
  2014年   79篇
  2013年   110篇
  2012年   36篇
  2011年   76篇
  2010年   64篇
  2009年   72篇
  2008年   57篇
  2007年   71篇
  2006年   59篇
  2005年   64篇
  2004年   52篇
  2003年   62篇
  2002年   34篇
  2001年   20篇
  2000年   17篇
  1999年   17篇
  1998年   17篇
  1997年   19篇
  1996年   10篇
  1995年   12篇
  1994年   16篇
  1993年   8篇
  1992年   11篇
  1991年   1篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   6篇
  1984年   11篇
  1983年   4篇
  1982年   10篇
  1981年   4篇
  1980年   4篇
  1978年   1篇
排序方式: 共有1425条查询结果,搜索用时 125 毫秒
91.
Bone and cartilage consist of different organic matrices, which can both be mineralized by the deposition of nano-sized calcium phosphate particles. We have studied these mineral particles in the mineralized cartilage layer between bone and different types of cartilage (bone/articular cartilage, bone/intervertebral disk, and bone/growth cartilage) of individuals aged 54 years, 12 years, and 6 months. Quantitative backscattered electron imaging and scanning small-angle X-ray scattering at a synchrotron radiation source were combined with light microscopy to determine calcium content, mineral particle size and alignment, and collagen orientation, respectively. Mineralized cartilage revealed a higher calcium content than the adjacent bone (p<0.05 for all samples), whereas the highest values were found in growth cartilage. Surprisingly, we found the mineral platelet width similar for bone and mineralized cartilage, with the exception of the growth cartilage sample. The most striking result, however, was the abrupt change of mineral particle orientation at the interface between the two tissues. While the particles were aligned perpendicular to the interface in cartilage, they were oriented parallel to it in bone, reflecting the morphology of the underlying organic matrices. The tight bonding of mineralized cartilage to bone suggests a mechanical role for the interface of the two elastically different tissues, bone and cartilage.  相似文献   
92.
EEG-based communication and control: speed-accuracy relationships   总被引:3,自引:0,他引:3  
People can learn to control mu (8–12 Hz) or beta (18–25 Hz) rhythm amplitude in the EEG recorded over sensorimotor cortex and use it to move a cursor to a target on a video screen. In our current EEG-based brain–computer interface (BCI) system, cursor movement is a linear function of mu or beta rhythm amplitude. In order to maximize the participant's control over the direction of cursor movement, the intercept in this equation is kept equal to the mean amplitude of recent performance. Selection of the optimal slope, or gain, which determines the magnitude of the individual cursor movements, is a more difficult problem. This study examined the relationship between gain and accuracy in a 1-dimensional EEG-based cursor movement task in which individuals select among 2 or more choices by holding the cursor at the desired choice for a fixed period of time (i.e., the dwell time). With 4 targets arranged in a vertical column on the screen, large gains favored the end targets whereas smaller gains favored the central targets. In addition, manipulating gain and dwell time within participants produces results that are in agreement with simulations based on a simple theoretical model of performance. Optimal performance occurs when correct selection of targets is uniform across position. Thus, it is desirable to remove any trend in the function relating accuracy to target position. We evaluated a controller that is designed to minimize the linear and quadratic trends in the accuracy with which participants hit the 4 targets. These results indicate that gain should be adjusted to the individual participants, and suggest that continual online gain adaptation could increase the speed and accuracy of EEG-based cursor control.  相似文献   
93.
The origin of cortical microtubules (CMTs) was investigated in transgenic BY-2 cells stably expressing a GFP (green fluorescent protein) -tubulin fusion protein (BY-GT16). In a previous study, we found that CMTs were initially organized in the perinuclear regions but then elongated to reach the cell cortex where they formed bright spots, and that the appearance of parallel MTs from the bright spots was followed by the appearance of transverse MTs (Kumagai et al., Plant Cell Physiol. 42, 723-732, 2001). In this study, we investigated the migration of tubulin to the reorganization sites of CMTs at the M/G1 interface. After synchronization of the BY-GT16 cells by aphidicolin, the localization of GFP-tubulin was monitored and analyzed by deconvolution microscopy. GFP-tubulin was found to accumulate on the nuclear surface near the cell plate at the final stage of phragmoplast collapse. Subsequently, GFP-tubulin accumulated again on the nuclear surface opposite the cell plate, where nascent MTs elongated to the cell cortex. The significance of these observations on the mode of CMT organization is discussed.  相似文献   
94.
The small adaptor protein RIL consists of two segments, the C-terminal LIM and the N-terminal PDZ domain, which mediate multiple protein-protein interactions. The RIL LIM domain can interact with PDZ domains in the protein tyrosine phosphatase PTP-BL and with the PDZ domain of RIL itself. Here, we describe and characterise the interaction of the RIL PDZ domain with the zyxin-related protein TRIP6, a protein containing three C-terminal LIM domains. The second LIM domain in TRIP6 is sufficient for a strong interaction with RIL. A weaker interaction with the third LIM domain in TRIP6, including the proper C-terminus, is also evident. TRIP6 also interacts with the second out of five PDZ motifs in PTP-BL. For this interaction to occur both the third LIM domain and the proper C-terminus are necessary. RNA expression analysis revealed overlapping patterns of expression for TRIP6, RIL and PTP-BL, most notably in tissues of epithelial origin. Furthermore, in transfected epithelial cells TRIP6 can be co-precipitated with RIL and PTP-BL PDZ polypeptides, and a co-localisation of TRIP6 and RIL with Factin structures is evident. Taken together, PTP-BL, RIL and TRIP6 may function as components of multi-protein complexes at actin-based sub-cellular structures.  相似文献   
95.
In arbuscular mycorrhizas, H+-ATPase is active in the plant membrane around arbuscules but absent from plant mutants defective in arbuscule development (Gianinazzi-Pearson et al. 1995, Can J Bot 73: S526–S532). The proton-pumping H+-ATPase is encoded by a family of genes in plants. Immunocytochemical studies and promoter-gusA fusion assays were performed in transgenic tobacco (Nicotiana tabacum L.) to determine whether the periarbuscular enzyme activity results from de-novo activation of plant genes by an arbuscular mycorrhizal fungus. The H+-ATPase protein was localized in the plant membrane around arbuscule hyphae. The enzyme was absent from non-colonized cortical cells. Regulation of seven H+-ATPase genes (pma) was compared in non-mycorrhizal and mycorrhizal roots by histochemical detection of β-glucuronidase (GUS) activity. Two genes (pma2, pma4) were induced in arbuscule-containing cells of mycorrhizal roots but not in non-mycorrhizal cortical tissues or senescent mycorrhiza. It is concluded that de-novo H+-ATPase activity in the periarbuscular membrane results from selective induction of two H+-ATPase genes, which can have diverse roles in plant-fungal interactions at the symbiotic interface. Received: 23 October 1999 / Accepted: 7 February 2000  相似文献   
96.
本文描述神经干复合动作电位实验的软件设计及其主要特点,友好的人机界面和简便的波形处理,并给出了实际实验结果,由于软件设计在智能化仪器中的重要作用,所以应加以仔细考虑。  相似文献   
97.
ABSTRACT Bacterial epibionts were observed on the surface of the marine sediment ciliate Geleia fossata. Rod-shaped bacteria, from 2-10 X103 per ciliate, were universally positioned in ciliated grooves, in apparent spatial association with dikinetids. SEM and TEM examination of the ciliates confirmed that a tight affiliation exists between the epibiotic bacteria and ciliate cortex infrastructures. These observations, as well as the distinct bacterial distribution pattern over ciliate surface, suggest that there is a close epibiont/host physiological integration. Epibiotic bacteria were also observed on the surfaces of other sediment ciliates from the genera Loxophyllum, Tracheloraphis, Geleia, Paraspathidium , and Cyclidium. These findings indicate that the bacterial/protozoa associations are widespread in the marine benthic environment. The potential benefits for both epibionts and their hosts are discussed.  相似文献   
98.
Modern brain technology is a highly dynamic and innovative field of research with great potential for medical applications. Recent advances in recording neural signals from the brain by brain-machine interfacing presage new therapeutic options for paralyzed people by means of neural motor prostheses. This paper examines foreseeable ethical questions related to the research on brainmachine interfaces and their possible future applications. It identifies four major topics that need to be considered: first, the questions of personality and its possible alterations; second, responsibility and its possible constraints; third, therapeutic applications and their possible exceedance; and fourth, questions of research ethics that arise when progressing from animal experimentation to application to human subjects. This paper, in identifying and addressing the ethical questions raised by brain-machine interfaces, presents concerns that need to be considered if possible prosthetics based on modern brain technology are to be used cautiously and responsibly.  相似文献   
99.
100.
Proteins are the building blocks, effectors and signal mediators of cellular processes. A protein’s function, regulation and localization often depend on its interactions with other proteins. Here, we describe a protocol for the yeast protein-fragment complementation assay (PCA), a powerful method to detect direct and proximal associations between proteins in living cells. The interaction between two proteins, each fused to a dihydrofolate reductase (DHFR) protein fragment, translates into growth of yeast strains in presence of the drug methotrexate (MTX). Differential fitness, resulting from different amounts of reconstituted DHFR enzyme, can be quantified on high-density colony arrays, allowing to differentiate interacting from non-interacting bait-prey pairs. The high-throughput protocol presented here is performed using a robotic platform that parallelizes mating of bait and prey strains carrying complementary DHFR-fragment fusion proteins and the survival assay on MTX. This protocol allows to systematically test for thousands of protein-protein interactions (PPIs) involving bait proteins of interest and offers several advantages over other PPI detection assays, including the study of proteins expressed from their endogenous promoters without the need for modifying protein localization and for the assembly of complex reporter constructs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号