首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
  国内免费   2篇
  2022年   2篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
51.
本文合成了一种聚脯氨酸亲和层析凝胶,并用这种凝胶纯化了猪血小板外廓蛋白。纯化的外廓蛋白在SDS-聚丙烯酰胺凝胶电泳中呈单一蛋白带,分子量14kD;在体外能显著抑制肌动蛋白聚合。  相似文献   
52.
A peanut cDNA phage surface display library was constructed and screened for the presence of IgE-binding proteins. We used a serum from a peanut-sensitized individual with a low specific IgE level to peanut extract and suffering from mild symptoms after peanut ingestion. A total of 1011 cDNA clones were screened by affinity selection towards serum IgE immobilized to solid-phase supports. After five rounds of selective enrichment, sequence determination of 25 inserts derived from different clones revealed presence of a single cDNA species. The cDNA-encoded gene product, formally termed Ara h 5, shows up to 80% amino acid sequence identity to the well-known plant allergen profilin, a 14 kD protein present only in low amount in peanut extracts. Immunoblot analysis of fifty sera from individuals sensitized to peanut showed that 16% had mounted a detectable IgE response to the newly identified peanut profilin. High-level expression as non-fusion protein in BL21 (DE3) was carried under control of the inducible T7 promoter. Peanut profilin was purified by affinity chromatography on poly-( -proline)-Sepharose and yielded 30 mg l−1 culture of highly pure recombinant allergen. In spite of the high level of up to 80% amino acid identity to other plant profilins, inhibition experiments with recombinant profilins of peanut, cherry, pear, celery and birch revealed marked differences regarding their IgE-binding capacity.  相似文献   
53.
Schmidt von Braun S  Schleiff E 《Planta》2008,227(5):1151-1159
Chloroplasts accumulate in response to low light, whereas high light induces an actin-dependent avoidance movement. This is a long known process, but its molecular base is barely understood. Only recently first components of the blue light perceiving signal cascade initiating this process were described. Among these, a protein was identified by the analysis of a deletion mutant in the corresponding gene resulting in a chloroplast unusual positioning phenotype. The protein was termed CHUP1 and initial results suggested chloroplast localization. We demonstrate that the protein is indeed exclusively and directly targeted to the chloroplast surface. The analysis of the deletion mutant of CHUP1 using microarray analysis shows an influence on the expression of genes found to be up-regulated, but not on genes found to be down-regulated upon high light exposure in wild-type. Analyzing a putative role of CHUP1 as a linker between chloroplasts and the cytoskeleton, we demonstrate an interaction with actin, which is independent on the filamentation status of actin. Moreover, binding of CHUP1 to profilin—an actin modifying protein—could be shown and an enhancing effect of CHUP1 on the interaction of profilin to actin is demonstrated. Therefore, a role of CHUP1 in bridging chloroplasts to actin filaments and a regulatory function in actin polymerization can be discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
54.
Mango can cause severe anaphylactic reactions. Profilin has been assumed partly responsible for the cross-reactivity between mango fruit and other allergens but has not been finally clarified. In this study, two isoforms of mango fruits profilin were amplified by RT-PCR and 3'RACE from total RNA. Each mango profilin cDNA includes an open reading frame coding for 131 amino acids. The deduced amino acid sequence of the corresponding protein show high identity with other allergenic profilins. Expression of the recombinant mango profilin was carried out in Escherichia coli BL21(DE3) using vector PET28a and the purification of the recombinant protein was performed via affinity chromatography with Ni+ coupled to sepharose. IgE reactivity of recombinant mango profilin was investigated by immunoblot and 8 of 18 mango-allergic patients tested presented specific IgE-antibodies to recombinant mango profilin. IgE-inhibition and ELISA inhibition experiments were performed to analyze mango profilin cross-reactivity with profilins from birch pollen and high cross-reactivities have been found.  相似文献   
55.
Profilin is a small actin-binding protein and is expressed at high levels in mature pollen where it is thought to regulate actin filament dynamics upon pollen germination and tube growth. The majority of identified plant profilins contain a MAP kinase phosphorylation motif, P-X-T-P, and a MAP kinase interaction motif (KIM). In in vitro kinase assays, the tobacco MAP kinases p45(Ntf4) and SIPK, when activated by the tobacco MAP kinase kinase NtMEK2, can phosphorylate the tobacco profilin NtProf2. Mutagenesis of the threonine residue in this motif identified it as the site of MAP kinase phosphorylation. Fractionation of tobacco pollen extracts showed that p45(Ntf4) is found exclusively in the high-speed pellet fraction while SIPK and profilin are predominantly cytosolic. These data identify one of the first substrates to be directly phosphorylated by MAP kinases in plants.  相似文献   
56.
57.
The continuously changing polar cytoplasmic organization during initiation and tip growth of root hairs is reflected by a dynamic redistribution of cytoskeletal elements. The small G-actin binding protein, profilin, which is known to be a widely expressed, potent regulator of actin dynamics, was specifically localized at the tip of root hairs and co-distributed with a diffusely fluorescing apical cap of actin, but not with subapical actin microfilament (MF) bundles. Profilin and actin caps were present exclusively in the bulge of outgrowing root hairs and at the apex of elongating root hairs; both disappeared when tip growth terminated, indicating a tip-growth mechanism that involves profilin-actin interactions for the delivery and localized exocytosis of secretory vesicles. Phosphatidylinositol-4,5-bisphosphate (PIP2), a ligand of profilin, was localized almost exclusively in the bulge and, subsequently, formed a weak tip-to-base gradient in the elongating root hairs. When tip growth was eliminated by the MF-disrupting inhibitor cytochalasin D, the apical profilin and the actin fluorescence were lost. Mastoparan, which is known to affect the PIP2 cycle, probably by stimulating phospholipases, caused the formation of a meshwork of distinct actin MFs replacing the diffuse apical actin cap and, concomittantly, tip growth stopped. This suggests that mastoparan interferes with the PIP2-regulated profilin-actin interactions and hence disturbs conditions indispensable for the maintenance of tip growth in root hairs. Received: 11 March 1999 / Accepted: 27 May 1999  相似文献   
58.
Summary Although it is known that actin polymerizes rapidly at the plasma membrane during the ingestion phase of phagocytosis, not yet fully understood are the mechanisms by which actin is recruited to form a phagoeytic cup and subsequently is dissociated from the phagosome. The aim of this study was to identify actin-binding proteins that mediated actin filament dynamics during phagosome formation and processing. We report that profilins I and II, which promote filament assembly, and cofilin, which stimulates filament disassembly, were constituents of phagosomes isolated fromDictyostelium discoideum fed latex beads, and associated with actin. Biochemical analyses detected one isoform only of cofilin, which bound actin in unstimulated cells as well as in cells engaged in phagocytosis, subjected to various stress treatments, and through development. At membranes of young phagosomes, profilins I and II colocalized with monomeric actin labeled with fluorescent DNase I, and cofilin colocalized with filamentous actin labeled with rhodamine phalloidin. Both immunocytochemical and quantitative immunoblotting data indicated that the kinetic loss of profilins I, II, and cofilin of maturing phagosomes closely followed the falling levels of actin associated with the vesicles. As evidence of vesicle processing,D. discoideum crystal protein (an esterase) was recruited rapidly to phagosomes and its levels increased while those of actin, profilins I, II, and cofilin jointly decreased. The localization data and concurrent losses of profilins and cofilin with actin from phagosomes are consistent with the roles of these actin-binding proteins in filament dynamics and indicated that they were involved in regulating the assembly and disassembly of the actin coat of phagosomes.Abbreviations DNase deoxyribonuclease - FITC fluorescein isothiocyanate - NEpHGE nonequilibrium pH gradient gel electrophoresis - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   
59.
Successful infection by the opportunistic pathogen Legionella pneumophila requires the collective activity of hundreds of virulence proteins delivered into the host cell by the Dot/Icm type IV secretion system. These virulence proteins, also called effectors modulate distinct host cellular processes to create a membrane-bound niche called the Legionella containing vacuole (LCV) supportive of bacterial growth. We found that Ceg14 (Lpg0437), a Dot/Icm substrate is toxic to yeast and such toxicity can be alleviated by overexpression of profilin, a protein involved in cytoskeletal structure in eukaryotes. We further showed that mutations in profilin affect actin binding but not other functions such as interactions with poly-l-proline or phosphatidylinositol, abolish its suppressor activity. Consistent with the fact the profilin suppresses its toxicity, expression of Ceg14 but not its non-toxic mutants in yeast affects actin distribution and budding of daughter cells. Although Ceg14 does not detectably interact with profilin, it co-sediments with filamentous actin and inhibits actin polymerization, causing the accumulation of short actin filaments. Together with earlier studies, these results reveal that multiple L. pneumophila effectors target components of the host cytoskeleton.  相似文献   
60.
Summary Profilin is detected by means of immunoblotting in the green algaMicrasterias denticulata at a molecular mass of about 14 kDa with antibodies against celery root profilin, recombinant tobacco profilin, and recombinant birch profilin. Poly-L-proline purification ofM. denticulata extracts leads to a single band at 14 kDa. By means of immunoelectron microscopy first evidence is provided for the presence of profilin in a microtubule center associated with the migrating nucleus in high-pressure-frozen and freeze-substituted cells. Colocalization with a particular filamen-tous-actin aggregation in the same area suggests a role of profilin in the process of nuclear migration. Moreover staining is visible in several areas of the nucleus including the nucleolus, heterochromatin, and nuclear-pore complexes. An even distribution of profilin is found throughout the cytoplasm at the confocal-microscopy level as well as by immunogold labeling. Occasionally also areas at the surface of the chloroplast are stained.Abbreviations FITC fluorescein isothiocyanate Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号