首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
  国内免费   2篇
  2022年   2篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
31.
We investigated the role of profilin 2 in the stemness, migration, and invasion of HT29 cancer stem cells (CSCs). Increased and decreased levels of profilin 2 significantly enhanced and suppressed the self-renewal, migration, and invasion ability of HT29 CSCs, respectively. Moreover, profilin 2 directly regulated the expression of stemness markers (CD133, SOX2, and β-catenin) and epithelial mesenchymal transition (EMT) markers (E-cadherin and snail). CD133 and β-catenin were up-regulated by overexpression of profilin 2 and down-regulated by depletion of profilin 2. SOX2 was decreased by profilin 2 depletion. E-cadherin was not influenced by profilin 2- overexpression but increased by profilin 2- knockdown. The expression of snail was suppressed by profilin 2- knockdown. We speculated that stemness and the EMT are closely linked through profilin 2-related pathways. Therefore, this study indicates that profilin 2 affects the metastatic potential and stemness of colorectal CSCs by regulating EMT- and stemness-related proteins.  相似文献   
32.
Many types of cells transit in vitro from a two‐ to a three‐dimensional growth, when they are exposed to microgravity. The underlying mechanisms are not yet understood. Hence, we investigated the impact of microgravity on protein content and growth behavior. For this purpose, the human thyroid cancer cells FTC‐133 were seeded either in recently developed cell containers that can endure enhanced physical forces and perform media changes and cell harvesting automatically or in T‐25 culture flasks. All cells were cultured for five days at 1g. Afterwards, a part of the cell containers were flown to the International Space Station, while another part was kept on the ground. T‐25 flasks were mounted on and next to a Random Positioning Machine. The cells were cultured for 12 days under the various conditions, before they were fixed with RNAlater. All fixed cultures showed monolayers, but three‐dimensional aggregates were not detected. In a subsequent protein analysis, 180 proteins were identified by mass spectrometry. These proteins did not indicate significant differences between cells exposed to microgravity and their 1g controls. However, they suggest that an enhanced production of proteins related to the extracellular matrix could detain the cells from spheroid formation, while profilin‐1 is phosphorylated.  相似文献   
33.
Profilins are small actin-binding proteins found in eukaryotes and certain viruses that are involved in cell development, cytokinesis, membrane trafficking, and cell motility. Originally identified as an actin sequestering/binding protein, profilin has been involved in actin polymerization dynamics. It catalyzes the exchange of ADP/ATP in actin and increases the rate of polymerization. Profilins also interact with polyphosphoinositides (PPI) and proline-rich domains containing proteins. Through its interaction with PPIs, profilin has been linked to signaling pathways between the cell membrane and the cytoskeleton, while its role in membrane trafficking has been associated with its interaction with proline-rich domain-containing proteins. Depending on the organism, profilin is present in a various number of isoforms. Four isoforms of profilin have been reported in higher organisms, while only one or two isoforms are expressed in single-cell organisms. The affinity of these isoforms for their ligands varies between isoforms and should therefore modulate their functions. However, the significance and the functions of the different isoforms are not yet fully understood. The structures of many profilin isoforms have been solved both in the presence and the absence of actin and poly-L-proline. These structural studies will greatly improve our understanding of the differences and similarities between the different profilins. Structural stability studies of different profilins are also shedding some light on our understanding of the profilin/ligand interactions. Profilin is a multifaceted protein for which a dramatic increase in potential functions has been found in recent years; as such, it has been implicated in a variety of physiological and pathological processes.  相似文献   
34.
Profilin-1 (Pfn1) is an important actin-regulatory protein that is downregulated in human breast cancer and when forcibly elevated, it suppresses the tumor-initiating ability of triple-negative breast cancer cells. In this study, we demonstrate that Pfn1 overexpression reduces the stem-like phenotype (a key biologic feature associated with higher tumor-initiating potential) of MDA-MB-231 (MDA-231) triple-negative breast cancer cells. Interestingly, the stem-like trait of MDA-231 cells is also attenuated upon depletion of Pfn1. A comparison of cancer stem cell gene (CSC) gene expression signatures between depleted and elevated conditions of Pfn1 further suggest that Pfn1 may be somehow involved in regulating the expression of a few CSC-related genes including MUC1, STAT3, FZD7, and ITGB1. Consistent with the reduced stem-like phenotype associated with loss-of-function of Pfn1, xenograft studies showed lower tumor-initiating frequency of Pfn1-depleted MDA-231 cells compared to their control counterparts. In MMTV:PyMT mouse model, homozygous but not heterozygous deletion of Pfn1 gene leads to severe genetic mosaicism and positive selection of Pfn1-proficient tumor cells further supporting the contention that a complete lack of Pfn1 is likely not conducive for efficient tumor initiation capability of breast cancer cells. In summary, these findings suggest that the maintenance of optimal stemness and tumor-initiating ability of breast cancer cells requires a balanced expression of Pfn1.  相似文献   
35.
This work aims to investigate the presence of airborne grass pollen and to identify antigenic and allergenic profiles from eight different grass species collected in the Porto region (Portugal). Poaceae airborne pollen, sampled using a Hirst-type volumetric trap during 2003–2007, was the second most abundant type, and high concentrations were found from April to August. Pollen proteins extracted from the eight grass species collected were separated by SDS-PAGE, being the allergenic profile investigated by immunoblotting using sera from atopic patients and maize profilin polyclonal antibody (ZmPRO3). Pollen extract profiles showed several bands ranging from 10 to 97 kDa. In immunoblotting studies, a low molecular weight protein (12–13 kDa) was recognized by profilin antibody. Also, in all pollen extracts except Zea mays, the IgE binding proteins of 12–13 kDa were detected in sera from the 25 patients with different sensitization profiles presenting high IgE values (>80 kU/l). This protein can be considered as a potential causal agent of the allergic respiratory diseases.  相似文献   
36.
Actin and pollen tube growth   总被引:24,自引:0,他引:24  
L. Vidali  P. K. Hepler 《Protoplasma》2001,215(1-4):64-76
Summary Actin microfilaments (MFs) are essential for the growth of the pollen tube. Although it is well known that MFs, together with myosin, deliver the vesicles required for cell elongation, it is becoming evident that the polymerization of new actin MFs, in a process that is independent of actomyosin-dependent vesicle translocation, is also necessary for cell elongation. Herein we review the recent literature that focuses on this subject, including brief discussions of the actin-binding proteins in pollen, and their possible role in regulating actin MF activity. We promote the view that polymerization of new actin MFs polarizes the cytoplasm at the apex of the tube. This process is regulated in part by the apical calcium gradient and by different actin-binding proteins. For example, profilin binds actin monomers and gives the cell control over the initiation of polymerization. A more recently discovered actin-binding protein, villin, stimulates the formation of unipolar bundles of MFs. Villin may also respond to the apical calcium gradient, fragmenting MFs, and thus locally facilitating actin remodeling. While much remains to be discovered, it is nevertheless apparent that actin MFs play a fundamental role in controlling apical cell growth in pollen tubes.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   
37.
Summary Profilin is a ubiquitous actin-monomer-binding protein. The protistPhysarum polycephalum contains two profilins, ProA and ProP, present in amoebae and plasmodia, respectively. We have used mutantSaccharomyces cerevisiae cells in an attempt to observe distinct functions for the two profilins. Profilin-deficient yeast cells (pfy1) have delocalized actin cortical patches, do not contain visible actin cables, have reduced mating efficiency and do not grow at 37 °C or in the presence of caffeine. Deletion of theSRV2 gene (srv2), coding for the adenylyl cyclase-associated protein, also results in an altered actin distribution and an inability to survive on rich medium. We found that the pfy1 and srv2 mutant phenotypes were corrected equally well by the overexpression of Physarum ProA or yeast Pfy1p profilins. The pfy1 cells overexpressing ProP have improved mating efficiency and a normal distribution of actin cortical patches. These cells, however, have barely detectable actin cables, do not grow at 37 °C, and are sensitive to caffeine. Also, the expression of ProP does not correct the growth defect of the srv2 cells. These results suggest that the two Physarum proteins are not functionally equivalent in yeast cells. No difference was detected in the affinity of ProA and ProP for poly-L-proline, while ProA has a slightly greater affinity than ProP for phosphatidylinositol 4,5-biphosphate.Abbreviations FITC tfluorescein isothiocyanate - PIP2 phosphatidylinositol 4,5-biphosphate - YPD yeast extract peptone dextrose  相似文献   
38.
Summary Recombinant profilins from different sources (Betula verrucosa, Schizosaccharomyces pombe, Acanthamoeba castellani, or man) cause marked effects on cell growth and morphogenesis when microinjected into growing cells of the green algaMicrasterias denticulata. Whereas control injections with -lactoglobulin only result in a slight delay of cell growth, when profilin is injected cell differentiation ceases and only resumes about 1 to 2 h after the injection, depending on the dose. The resulting cell does not show any malformations, but is reduced in size and retarded in differentiation compared to controls. As a consequence of the profilin microinjection the pattern of cytoplasmic streaming and cytoplasmic structure are also altered. Gelsolin, injected for comparison, leads to minor retardation of cell development but produces less marked effects than profilin. Microinjection of fluorescently labeled profilin shows even distribution throughout the cytoplasm and more intense fluorescence in the nucleus. Electron microscopical investigations of cells fixed immediately after profilin injection show a normal distribution of dictyosomes, ER cisternae, microtubules, and secretory vesicles compared to noninjected controls at the same developmental stage. Our results indicate that disturbance of the natural actin turnover by the injection of actin-binding proteins strongly affects development ofMicrasterias, corroborating a key role of actin in the morphogenetic process.  相似文献   
39.
40.
Braun M  Hauslage J  Czogalla A  Limbach C 《Planta》2004,219(3):379-388
Polar organization and gravity-oriented, polarized growth of characean rhizoids are dependent on the actin cytoskeleton. In this report, we demonstrate that the prominent center of the Spitzenkörper serves as the apical actin polymerization site in the extending tip. After cytochalasin D-induced disruption of the actin cytoskeleton, the regeneration of actin microfilaments (MFs) starts with the reappearance of a flat, brightly fluorescing actin array in the outermost tip. The actin array rounds up, produces actin MFs that radiate in all directions and is then relocated into its original central position in the center of the Spitzenkörper. The emerging actin MFs rearrange and cross-link to form the delicate, subapical meshwork, which then controls the statolith positioning, re-establishes the tip-high calcium gradient and mediates the reorganization of the Spitzenkörper with its central ER aggregate and the accumulation of secretory vesicles. Tip growth and gravitropic sensing, which includes control of statolith positioning and gravity-induced sedimentation, are not resumed until the original polar actin organization is completely restored. Immunolocalization of the actin-binding proteins, actin-depolymerizing factor (ADF) and profilin, which both accumulate in the center of the Spitzenkörper, indicates high actin turnover and gives additional support for the actin-polymerizing function of this central, apical area. Association of villin immunofluorescence with two populations of thick undulating actin cables with uniform polarity underlying rotational cytoplasmic streaming in the basal region suggests that villin is the major actin-bundling protein in rhizoids. Our results provide evidence that the precise coordination of apical actin polymerization and dynamic remodeling of actin MFs by actin-binding proteins play a fundamental role in cell polarization, gravity sensing and gravity-oriented polarized growth of characean rhizoids.Abbreviations ADF Actin-depolymerizing factor - CD Cytochalasin D - MF Microfilament  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号