首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   24篇
  国内免费   20篇
  2023年   9篇
  2022年   4篇
  2021年   20篇
  2020年   16篇
  2019年   7篇
  2018年   11篇
  2017年   6篇
  2016年   11篇
  2015年   11篇
  2014年   21篇
  2013年   30篇
  2012年   47篇
  2011年   24篇
  2010年   18篇
  2009年   44篇
  2008年   36篇
  2007年   43篇
  2006年   18篇
  2005年   19篇
  2004年   12篇
  2003年   16篇
  2002年   9篇
  2001年   10篇
  2000年   10篇
  1999年   15篇
  1998年   8篇
  1997年   8篇
  1996年   11篇
  1995年   15篇
  1994年   7篇
  1993年   7篇
  1992年   4篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   5篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1978年   1篇
  1972年   1篇
排序方式: 共有576条查询结果,搜索用时 15 毫秒
51.
This paper is the twentieth installment of our annual review of research concerning the opiate system. It summarizes papers published during 1997 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; eating and drinking; alcohol; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurologic disorders; electrical-related activity; general activity and locomotion; sex, pregnancy, and development; immunologic responses; and other behaviors.  相似文献   
52.
Hawlena H  Abramsky Z  Krasnov BR 《Oecologia》2007,154(3):601-609
Mechanisms that cause nonrandom patterns of parasite distribution among host individuals may influence the population and evolutionary dynamics of both parasites and hosts, but are still poorly understood. We studied whether survival, reproduction, and behavioral responses of fleas (Xenopsylla conformis) changed with the age of their rodent hosts (Meriones crassus), experimentally disentangling two possible mechanisms: (a) differential survival and/or fitness reward of parasites due to host age, and (b) active parasite choice of a host of a particular age. To explore the first mechanism, we raised fleas on rodents of two age groups and assessed flea survival as well as the quantity and quality of their offspring. To explore the second mechanism, three groups of fleas that differed in their previous feeding experience (no experience, experience on juvenile or experience on adult rodents) were given an opportunity to choose between juvenile and adult rodents in a Y-maze. Fleas raised on juvenile rodents had higher survival and had more offspring that emerged earlier than fleas raised on adults. However, fleas did not show any innate preference for juvenile rodents, nor were they able to learn to choose them. In contrast to our predictions, based on a single previous exposure, fleas learned to choose adult rodents. The results suggest that two mechanisms—differential survival and fitness reward of fleas, and associative learning by them—affect patterns of flea distribution between juvenile and adult rodents. The former increases whereas the latter reduces flea densities on juvenile rodents. The ability of fleas to learn to choose adult but not juvenile hosts may be due to: (a) a stronger stimulus from adults, (b) a higher profitability of adults in terms of predictability and abundance, or (c) the evolutionary importance of recognizing adult but not juvenile hosts as representatives of the species.  相似文献   
53.
We present a P system with replicated rewriting to solve the Maximum Clique Problem for a graph. Strings representing cliques are built gradually. This involves the use of inhibitors that control the space of all generated solutions to the problem. Calculating the maximum clique for a graph is a highly relevant issue not only on purely computational grounds, but also because of its relationship to fundamental problems in genomics. We propose to implement the designed P system by means of a DNA algorithm. This algorithm is then compared with two standard papers that addressed the same problem and its DNA implementation in the past. This comparison is carried out on the basis of a series of computational and physical parameters. Our solution features a significantly lower cost in terms of time, the number and size of strands, as well as the simplicity of the biological implementation.  相似文献   
54.
In this paper I propose a reinforcement learning model for a predator preying upon two types of prey, the unpalatable (noxious) models, and the palatable mimics. The latter type of prey resembles the models in appearance so as to derive some protection from the predator who must avoid the unpalatable models. Essentially the predator is treated as a learning automaton adopting a simple reinforcement learning strategy in order to increase its consumption of palatable prey and reduce the consumption of unpalatable ones. The populations of both mimics and models are assumed to grow logistically.  相似文献   
55.
Acute choice behavior in ingesting two different concentrations of sucrose in Drosophila is presumed to include learning and memory. Effects on this behavior were examined for four mutations that block associative learning (dunce, rutabaga, amnesiac, and radish). Three of these mutations cause cyclic AMP signaling defects and significantly reduced taste discrimination. The exception was radish, which affects neither. Electrophysiological recordings confirmed that the sensitivity of taste receptors is almost indistinguishable in all flies, whether wild type or mutant. These results suggest that food choice behavior in Drosophila involves central nervous learning and memory operating via cyclic AMP signaling pathways.  相似文献   
56.
研究了一类具有非线性种群反应扩散系统奇摄动Robin初始边值问题.在适当的条件下,利用微分不等式理论,讨论了问题解的存在性和渐近性态.  相似文献   
57.
Substances such as acetylcholine and glutamate act as both neurotransmitters and neuromodulators. As neuromodulators, they change neural information processing by regulating synaptic transmitter release, altering baseline membrane potential and spiking activity, and modifying long-term synaptic plasticity. Slice physiology research has demonstrated that many neuromodulators differentially modulate afferent, incoming information compared to intrinsic and recurrent processing in cortical structures such as piriform cortex, neocortex, and the hippocampus. The enhancement of afferent (external) pathways versus the suppression at recurrent (internal) pathways could cause cortical dynamics to switch between a predominant influence of external stimulation to a predominant influence of internal recall. Modulation of afferent versus intrinsic processing could contribute to the role of neuromodulators in regulating attention, learning, and memory effects in behavior.  相似文献   
58.
Dynamics of spike-timing dependent synaptic plasticity are analyzed for excitatory and inhibitory synapses onto cerebellar Purkinje cells. The purpose of this study is to place theoretical constraints on candidate synaptic learning rules that determine the changes in synaptic efficacy due to pairing complex spikes with presynaptic spikes in parallel fibers and inhibitory interneurons. Constraints are derived for the timing between complex spikes and presynaptic spikes, constraints that result from the stability of the learning dynamics of the learning rule. Potential instabilities in the parallel fiber synaptic learning rule are found to be stabilized by synaptic plasticity at inhibitory synapses if the inhibitory learning rules are stable, and conditions for stability of inhibitory plasticity are given. Combining excitatory with inhibitory plasticity provides a mechanism for minimizing the overall synaptic input. Stable learning rules are shown to be able to sculpt simple-spike patterns by regulating the excitability of neurons in the inferior olive that give rise to climbing fibers.  相似文献   
59.
60.
Brain accumulation of neurotoxic amyloid β (Aβ) peptide because of increased processing of amyloid precursor protein (APP), resulting in loss of synapses and neurodegeneration, is central to the pathogenesis of Alzheimer disease (AD). Therefore, the identification of molecules that regulate Aβ generation and those that cause synaptic damage is crucial for future therapeutic approaches for AD. We demonstrated previously that COPS5 regulates Aβ generation in neuronal cell lines in a RanBP9-dependent manner. Consistent with the data from cell lines, even by 6 months, COPS5 overexpression in APΔE9 mice (APΔE9/COPS5-Tg) significantly increased Aβ40 levels by 32% (p < 0.01) in the cortex and by 28% (p < 0.01) in the hippocampus, whereas the increases for Aβ42 were 37% (p < 0.05) and 34% (p < 0.05), respectively. By 12 months, the increase was even more robust. Aβ40 levels increased by 63% (p < 0.001) in the cortex and by 65% (p < 0.001) in the hippocampus. Similarly, Aβ42 levels were increased by 69% (p < 0.001) in the cortex and by 71% (p < 0.011) in the hippocampus. Increased Aβ levels were translated into an increased amyloid plaque burden both in the cortex (54%, p < 0.01) and hippocampus (64%, p < 0.01). Interestingly, COPS5 overexpression increased RanBP9 levels in the brain, which, in turn, led to increased amyloidogenic processing of APP, as reflected by increased levels of sAPPβ and decreased levels of sAPPα. Furthermore, COPS5 overexpression reduced spinophilin in both the cortex (19%, p < 0.05) and the hippocampus (20%, p < 0.05), leading to significant deficits in learning and memory skills. Therefore, like RanBP9, COPS5 also plays a pivotal role in amyloid pathology in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号