首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2160篇
  免费   125篇
  国内免费   68篇
  2023年   38篇
  2022年   35篇
  2021年   42篇
  2020年   55篇
  2019年   70篇
  2018年   63篇
  2017年   54篇
  2016年   49篇
  2015年   58篇
  2014年   97篇
  2013年   126篇
  2012年   83篇
  2011年   105篇
  2010年   78篇
  2009年   114篇
  2008年   96篇
  2007年   119篇
  2006年   112篇
  2005年   86篇
  2004年   80篇
  2003年   85篇
  2002年   74篇
  2001年   51篇
  2000年   46篇
  1999年   41篇
  1998年   34篇
  1997年   34篇
  1996年   37篇
  1995年   22篇
  1994年   31篇
  1993年   23篇
  1992年   17篇
  1991年   20篇
  1990年   20篇
  1989年   12篇
  1988年   14篇
  1987年   23篇
  1986年   9篇
  1985年   27篇
  1984年   34篇
  1983年   27篇
  1982年   23篇
  1981年   13篇
  1980年   19篇
  1979年   9篇
  1978年   9篇
  1977年   9篇
  1975年   6篇
  1973年   7篇
  1972年   5篇
排序方式: 共有2353条查询结果,搜索用时 15 毫秒
991.
GS10 [cyclo-(VKLdYPVKLdYP)] is a synthetic analog of the naturally occurring antimicrobial peptide gramicidin (GS) in which the two positively charged ornithine (Orn) residues are replaced by two positively charged lysine (Lys) residues and the two less polar aromatic phenylalanine (Phe) residues are replaced by the more polar tyrosine (Tyr) residues. In this study, we examine the effects of these seemingly conservative modifications to the parent GS molecule on the physical properties of the peptide, and on its interactions with lipid bilayer model and biological membranes, by a variety of biophysical techniques. We show that although GS10 retains the largely β-sheet conformation characteristic of GS, it is less structured in both water and membrane-mimetic solvents. GS10 is also more water soluble and less hydrophobic than GS, as predicted, and also exhibits a reduced tendency for self-association in aqueous solution. Surprisingly, GS10 associates more strongly with zwitterionic and anionic phospholipid bilayer model membranes than does GS, despite its greater water solubility, and the presence of anionic phospholipids and cholesterol (Chol) modestly reduces the association of both GS10 and GS to these model membranes. The strong partitioning of both peptides into lipid bilayers is driven by a large favorable entropy change opposed by a much smaller unfavorable enthalpy change. However, GS10 is also less potent than GS at inducing inverted cubic phases in phospholipid bilayer model membranes and at inhibiting the growth of the cell wall-less bacterium Acholeplasma laidlawii B. These results are discussed in terms of the comparative antibiotic and hemolytic activities of these peptides.  相似文献   
992.
Trehalases hydrolyze the non-reducing disaccharide trehalose amassed by cells as a universal protectant and storage carbohydrate. Recently, it has been shown that the activity of neutral trehalase Nth1 from Saccharomyces cerevisiae is mediated by the 14-3-3 protein binding that modulates the structure of both the catalytic domain and the region containing the EF-hand-like motif, whose role in the activation of Nth1 is unclear. In this work, the structure of the Nth1·14-3-3 complex and the importance of the EF-hand-like motif were investigated using site-directed mutagenesis, hydrogen/deuterium exchange coupled to mass spectrometry, chemical cross-linking, and small angle x-ray scattering. The low resolution structural views of Nth1 alone and the Nth1·14-3-3 complex show that the 14-3-3 protein binding induces a significant structural rearrangement of the whole Nth1 molecule. The EF-hand-like motif-containing region forms a separate domain that interacts with both the 14-3-3 protein and the catalytic trehalase domain. The structural integrity of the EF-hand like motif is essential for the 14-3-3 protein-mediated activation of Nth1, and calcium binding, although not required for the activation, facilitates this process by affecting its structure. Our data suggest that the EF-hand like motif-containing domain functions as the intermediary through which the 14-3-3 protein modulates the function of the catalytic domain of Nth1.  相似文献   
993.
Autophagy is a lysosomal bulk degradation pathway for cytoplasmic cargo, such as long-lived proteins, lipids, and organelles. Induced upon nutrient starvation, autophagic degradation is accomplished by the concerted actions of autophagy-related (ATG) proteins. Here we demonstrate that two ATGs, human Atg2A and Atg14L, colocalize at cytoplasmic lipid droplets (LDs) and are functionally involved in controlling the number and size of LDs in human tumor cell lines. We show that Atg2A is targeted to cytoplasmic ADRP-positive LDs that migrate bidirectionally along microtubules. The LD localization of Atg2A was found to be independent of the autophagic status. Further, Atg2A colocalized with Atg14L under nutrient-rich conditions when autophagy was not induced. Upon nutrient starvation and dependent on phosphatidylinositol 3-phosphate [PtdIns(3)P] generation, both Atg2A and Atg14L were also specifically targeted to endoplasmic reticulum-associated early autophagosomal membranes, marked by the PtdIns(3)P effectors double-FYVE containing protein 1 (DFCP1) and WD-repeat protein interacting with phosphoinositides 1 (WIPI-1), both of which function at the onset of autophagy. These data provide evidence for additional roles of Atg2A and Atg14L in the formation of early autophagosomal membranes and also in lipid metabolism.  相似文献   
994.
995.
The demand for diet products is continuously increasing, together with that for natural food ingredients. Stevioside and other steviol glycosides extracted from the leaves of the plant Stevia rebaudiana Bertoni are the first natural high-potency sweeteners to be approved for consumption in the United States and the European Union. However, the sweetness of these compounds is generally accompanied by aversive sensations, such as bitter and off-tastes, which may constitute a limit to their consumption. Moreover, consumers’ differences in sensitivity to high-potency sweeteners are well known, as well as difficulties in characterizing their aftertaste. Recently, TAS2R4 and TAS2R14 have been identified as the receptors that mediate the bitter off-taste of steviol glycosides in vitro. In the present study, we demonstrate that TAS2R4 gene polymorphism rs2234001 and TAS2R14 gene polymorphism rs3741843 are functional for stevioside bitterness perception.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0401-y) contains supplementary material, which is available to authorized users.  相似文献   
996.
The unraveling of sphingolipid metabolism and function in the last 40 years relied on the extensive study of inherited human disease and specifically-tailored mouse models. However, only few of the achievements made so far would have been possible without chemical biology tools, such as fluorescent and/or radio-labeled and other artificial substrates, (mechanism-based) enzyme inhibitors, cross-linking probes or artificial membrane models. In this review we provide an overview over chemical biology tools that have been used to gain more insight into the molecular basis of sphingolipid-related biology. Many of these tools are still of high relevance for the investigation of current sphingolipid-related questions, others may stimulate the tailoring of novel probes suitable to address recent and future issues in the field. This article is part of a Special Issue entitled Tools to study lipid functions.  相似文献   
997.
Barley seedlings were pre-treated with 1 and 5 μM H2O2 for 2 d and then supplied with water or 150 mM NaCl for 4 and 7 d. Exogenous H2O2 alone had no effect on the proline, malondialdehyde (MDA) and H2O2 contents, decreased catalase (CAT) activity and had no effect on peroxidase (POX) activity. Three new superoxide dismutase (SOD) isoenzymes appeared in the leaves as a result of 1 μM H2O2 treatment. NaCl enhanced CAT and POX activity. SOD activity and isoenzyme patterns were changed due to H2O2 pre-treatment, NaCl stress and leaf ageing. In pre-treated seedlings the rate of 14CO2 fixation was higher and MDA, H2O2 and proline contents were lower in comparison to the seedlings subjected directly to NaCl stress. Cl content in the leaves 4 and 7 d after NaCl supply increased considerably, but less in pre-treated plants. It was suggested that H2O2 metabolism is involved as a signal in the processes of barley salt tolerance.  相似文献   
998.
Soluble CD14 (sCD14) is a serum glycoprotein that binds to the Lipid A moiety of lipopolysaccharides (LPS) with high affinity as part of the innate immune response to bacterial endotoxins. In order to investigate structural interactions of Lipid A with sCD14, we have prepared an isotopically labeled form of a fully active and chemically defined endotoxin, Kdo2-Lipid A, which allowed us to carry out detailed NMR spectral mapping of this agonist ligand bound to sCD14 and identify for the first time structural regions that are strongly affected during complex formation with sCD14. These map to two adjacent areas comprising the lower portions of the sugar headgroup and upper half of the acyl chains I, III, and V, which are spatially proximal to the 1- and 4′-phosphate ends. Additionally, we have detected for the first time, presence of differential dynamic behavior for the affected resonances, suggesting a likely role for dynamics in the mechanism of Lipid A pattern recognition by sCD14.  相似文献   
999.
The kinetics of the formation and relaxation of transmembrane electric potential (Δψ) during the complete single turnover of CcO was studied in the bovine heart mitochondrial and the aa3-type Paracoccus denitrificans enzymes incorporated into proteoliposome membrane. The real-time Δψ kinetics was followed by the direct electrometry technique. The prompt oxidation of CcO and formation of the activated, oxidized (OH) state of the enzyme leaves the enzyme trapped in the open state that provides an internal leak for protons and thus facilitates dissipation of Δψ (τapp ≤ 0.5-0.8 s). By contrast, when the enzyme in the OH state is rapidly re-reduced by sequential electron delivery, Δψ dissipates much slower (τapp > 3 s). In P. denitrificans CcO proteoliposomes the accelerated Δψ dissipation is slowed down by a mutational block of the proton conductance through the D-, but not K-channel. We concluded that in contrast to the other intermediates the OH state of CcO is vulnerable to the elevated internal proton leak that proceeds via the D-channel.  相似文献   
1000.
There is increasing evidence for a major and critical involvement of lipids in signal transduction and cellular trafficking, and this has motivated large-scale studies on lipid pathways. The Lipid Metabolites and Pathways Strategy consortium is actively investigating lipid metabolism in mammalian cells and has made available time-course data on various lipids in response to treatment with KDO2-lipid A (a lipopolysaccharide analog) of macrophage RAW 264.7 cells. The lipids known as eicosanoids play an important role in inflammation. We have reconstructed an integrated network of eicosanoid metabolism and signaling based on the KEGG pathway database and the literature and have developed a kinetic model. A matrix-based approach was used to estimate the rate constants from experimental data and these were further refined using generalized constrained nonlinear optimization. The resulting model fits the experimental data well for all species, and simulated enzyme activities were similar to their literature values. The quantitative model for eicosanoid metabolism that we have developed can be used to design experimental studies utilizing genetic and pharmacological perturbations to probe fluxes in lipid pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号