首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   2篇
  国内免费   11篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   8篇
  2016年   6篇
  2015年   4篇
  2014年   19篇
  2013年   16篇
  2012年   8篇
  2011年   17篇
  2010年   11篇
  2009年   56篇
  2008年   68篇
  2007年   51篇
  2006年   55篇
  2005年   39篇
  2004年   47篇
  2003年   34篇
  2002年   28篇
  2001年   10篇
  2000年   17篇
  1999年   23篇
  1998年   22篇
  1997年   24篇
  1996年   22篇
  1995年   15篇
  1994年   14篇
  1993年   20篇
  1992年   16篇
  1991年   17篇
  1990年   23篇
  1989年   19篇
  1988年   23篇
  1987年   25篇
  1986年   12篇
  1985年   10篇
  1984年   6篇
  1983年   2篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
  1973年   4篇
  1972年   1篇
排序方式: 共有840条查询结果,搜索用时 89 毫秒
61.
Many parasites with complex life cycles increase the chances of reaching a final host by adapting strategies to manipulate their intermediate host's appearance, condition or behaviour. The acanthocephalan parasite Pomphorhynchus laevis uses freshwater amphipods as intermediate hosts before reaching sexual maturity in predatory fish. We performed a series of choice experiments with infected and uninfected Gammarus pulex in order to distinguish between the effects of visual and olfactory predator cues on parasite-induced changes in host behaviour. When both visual and olfactory cues, as well as only olfactory cues were offered, infected and uninfected G. pulex showed significantly different preferences for the predator or the non-predator side. Uninfected individuals significantly avoided predator odours while infected individuals significantly preferred the side with predator odours. When only visual contact with a predator was allowed, infected and uninfected gammarids behaved similarly and had no significant preference. Thus, we believe we show for the first time that P. laevis increases its chance to reach a final host by olfactory-triggered manipulation of the anti-predator behaviour of its intermediate host.  相似文献   
62.
In colonial seabirds, nesting density, egg-laying date and nest microhabitat affect the probability of eggs being taken by avian predators. Jungle Crows (Corvus macrorhynchos) are dominant predators of eggs of Black-tailed Gulls (Larus crassirostris). Factors affecting the probability of gulls allowing the crows to attack their nests or depredate their eggs and the probability of eggs being taken were studied by direct observation and egg census, respectively. The effect of vegetation heights, position in the colony, egg-laying date and neighbour nests on the probability of eggs being taken were examined at multiple spatial scales. Gull nests were depredated more easily by larger groups of crows. Nests in peripheral areas (<4 m from the edge of the colony) were also depredated more easily by the crows walking on the ground. Although the nests where eggs were laid early in the season were depredated more frequently, such nests highly synchronised in egg laying within a <2-m radius were less likely to be depredated than less-synchronised nests. The nests in tall vegetation were less likely to be depredated though those having neighbour nests in tall vegetation were not. The number of neighbour nests did not affect the probability of eggs being taken. Antipredation effects of nesting microhabitats vary with spatial scales at which the crows search and attack the nests of gulls.  相似文献   
63.
As a recent invader of North American lakes, Bythotrephes longimanus has induced large changes in crustacean zooplankton communities through direct predation effects. Here we demonstrate that Bythotrephes can also have indirect food web effects, specifically on rotifer fauna. In historical time series data, the densities of the colonial rotifer Conochilus unicornis significantly increased after Bythotrephes invasion in Harp Lake, Ontario. No such changes were observed in a non-invaded reference lake, the nearby Red Chalk Lake. Evidence for two mechanisms explaining the Conochilus increase was examined based on changes to the crustacean zooplankton community over time. Rapid and severe declines in several herbivorous species of cladoceran zooplankton after Bythotrephes detection indicated a decrease in exploitative competition pressure on Conochilus. Secondly, a later and significant decline to virtual extinction of native invertebrate predators (Mesocyclops and Leptodora) could account for the observed Conochilus increase which also began 1–2 years after invasion by Bythotrephes. Ultimately, it appears that both reduced competition followed by a loss of native invertebrate predators were necessary to lead to the large Conochilus densities observed following invader establishment. From this analysis of long-term community data, it appears that Bythotrephes has important indirect, as well as direct, food web effects in newly invaded North American lakes with implications for trophic relationships.  相似文献   
64.
A number of examples exist of trade-offs between mating success and survival; that is, success in one fitness component comes at the cost of success in the other fitness component. However, these expected trade-offs are – perhaps even more commonly – not observed. One explanation for this apparent paradox of missing trade-offs could be that the other factors generating fitness variation across individuals confound or obscure the expected trade-off. These confounding effects could arise in two general ways: (i) the additional source of variation could positively (or negatively) influence both fitness components (“shared confounder” hypothesis), or (ii) the additional source of variation could influence only one fitness component (“non-shared confounder” hypothesis). We tested whether parasitism by Gyrodactylus spp. could be a confounder of trade-offs between female preference and susceptibility to predation for male Trinidadian guppies (Poecilia reticulata). As in previous work, we did not find the expected trade-off; that is, the males preferred by females were not more likely to be eaten by predators. Because half of the experimental males were infected by Gyrodactylus in a paired design, we were able to show that females discriminated against infected males, but that infected males were not more susceptible to predation. Our results thus provide support for the non-shared confounder hypothesis. That is, by negatively affecting one fitness component (female choice) but not the other (susceptibility to predation), parasitism by Gyrodactylus could obscure the expected trade-off between female preference and susceptibility to predation.  相似文献   
65.
Foraging behavior is influenced by spatial and temporal habitat heterogeniety. Here we report on within-day foraging and perceived risk of predation by the striped mouse (Rhabdomys pumilio) in a grassland savannah with wooded “islands” using giving-up densities (GUD, amount of food left behind in depletable food patches). Higher GUDs correspond to higher forging costs. GUDs were measured six times per day at 2-h intervals from paired stations along fern–grass habitat boundaries at 3 and 6 m distances from 10 wooded islands. R. pumilio's GUDs varied significantly over the course of the day with highest GUDs during the afternoon hours of 1–3 pm, and lowest between 7 and 9 am in the morning. The same pattern was consistent for both habitats (fern and grass) and distances from the wooded islands. GUDs decreased with distance from the woody islands in both fern and grass habitats and were significantly lower in the fern habitat. This activity pattern suggests that R. pumilio responds to a spectrum of spatially and temporally varying risks from a variety of predators including aerial predators that increase risk as they make use of mid-day thermals.  相似文献   
66.
Creating multiyear cycles in population density demands, in traditional models, causal factors that operate on local populations in a density-dependent way with time lags. However, cycles of the geometrid Epirrita autumnata in northern Europe may be regional, not local; i.e., successive outbreaks occur in different localities. We review possible causes of cycles of E. autumnata under both local and regional scenarios, including large-scale synchrony. Assuming cyclicity is a local phenomenon, individual populations of E. autumnata display peaks but populations all over the outbreak range fluctuate in synchrony. This concept assumes that the peaks at most localities are so low that they do not lead to visible defoliation and easily remain unnoticed. In this scenario, populations are able to start recovery a few years after the crash, i.e., at the time of the mitigation of detrimental delayed density-dependent factors, such as delayed inducible resistance of the host plant or parasitism. In that case, the same factors that lead to crashes also explain the periodicity of cyclic fluctuations. According to the regional cyclicity scenario, different factors can be important in different phases of the cycle. The key is to identify the factors that tend to produce outbreaks with a periodicity of about 10 years. Initiation of the increase phase seems to coincide with maxima in sunspot activity, but causal connections remain unclear. Climatic factor(s) associated with the solar cycle could contribute to the large-scale geographic synchrony.  相似文献   
67.
We recently reported evidence for increased diapause incidence in the spider mite Tetranychus urticae in presence of the predatory mite Typhlodromus pyri. This effect may arise from (1) selective predation on non-diapause spider mites, (2) predator-induced diapause in spider mites, or (3) both. Using a different strain of T. urticae, we first recovered increased diapause incidence in association with predators. Then, we tested for selective feeding in two-choice experiments with equal numbers of non-diapause and diapause spider mites. We found that the predatory mite had a significant preference for the latter. This indicates that increased diapause incidence in association with predatory mites is not due to selective predation. Therefore, predator-mediated physiological induction of diapause seems a more likely explanation. The cues leading to induction appear to relate to the predators, not their effects, since predation simulated by spider-mite removal or puncturing did not significantly affect diapause incidence. Why spider mites benefit from this response, remains an open question.This revised version was published online in May 2005 with a corrected cover date.  相似文献   
68.
The relationships between a predator population's mortality rate and its population size and stability are investigated for several simple predator-prey models with stage-structured prey populations. Several alternative models are considered; these differ in their assumptions about the nature of density dependence in the prey's population growth; the nature of stage-transitions; and the stage-selectivity of the predator. Instability occurs at high, rather than low predator mortality rates in most models with highly stage-selective predation; this is the opposite of the effect of mortality on stability in models with homogeneous prey populations. Stage-selective predation also increases the range of parameters that lead to a stable equilibrium. The results suggest that it may be common for a stable predator population to increase in abundance as its own mortality rate increases in stable systems, provided that the predator has a saturating functional response. Sufficiently strong density dependence in the prey generally reverses this outcome, and results in a decrease in predator population size with increasing predator mortality rate. Stability is decreased when the juvenile stage has a fixed duration, but population increases with increasing mortality are still observed in large areas of stable parameter space. This raises two coupled questions which are as yet unanswered; (1) do such increases in population size with higher mortality actually occur in nature; and (2) if not, what prevents them from occurring? Stage-structured prey and stage-related predation can also reverse the 'paradox of enrichment', leading to stability rather than instability when prey growth is increased.  相似文献   
69.
The sample of Anapithecus from Rudabánya, Hungary, is remarkable in preserving a large number of immature individuals. We used perikymata counts, measurements of root length and cuspal enamel thickness, and observations of the sequence of tooth germs that cross match specific developmental stages in Anapithecus to construct the first composite picture and time scale for dental development in a pliopithecoid (Catarrhini, Primates). We conclude that the age of eruption of M1 in Anapithecus was similar to various macaque species (approximately 1.45 months), but that M2 and M3 emergence were close to 2.2 and 3.2 years, respectively (both earlier than expected for similarly sized cercopithecoids). There may have been little difference in individual tooth formation times between cercopithecoids and Anapithecus, but the degree of molar overlap during M1, M2, and M3 crown development, which is extreme in Anapithecus, is fundamentally different. Overall dental development in Anapithecus was very rapid. Old World monkeys appear derived in lacking significant molar overlap, and hominoids may be derived in having longer tooth formation times, both resulting in longer overall dental development times. This is consistent with the general conclusion that the Pliopithecoidea is an outgroup to the Cercopithecoidea and the Hominoidea. On the other hand, rapid dental formation in Anapithecus may be an apomorphy indicative of an unusually rapid life history or unique pressures related to diet and maturation. Folivory and/or predation pressure may be responsible for generating selection to more rapidly erupt permanent teeth and possibly attain adult body masses in Anapithecus. Whatever the case, Anapithecus, with an M3 emergence of approximately 3.2 years, is dramatically faster than any extant catarrhine of similar body mass. This represents yet another unusual attribute of this poorly known fossil catarrhine.  相似文献   
70.
Single species aggregations are a commonly observed phenomenon. One potential explanation for these aggregations is provided by the selfish herd hypothesis, which states that aggregations result from individual efforts to reduce personnel predation risk at the expense of group-mates. Not all movement rules based on the selfish herd hypothesis are consistent with observed animal behavior. Previous work has shown that herd-like aggregations are not generated by movement rules limited to local interactions between nearest neighbors. Instead, rules generating realistic herds appear to require delocalized interactions. To date, it has been an open question whether or not the necessary delocalization can emerge from local interactions under natural selection. To address this question, we study an individual-based model with a single quantitative genetic trait that controls the influence of neighbors as a function of distance. The results indicate that predation-based selection can increase the influence of distant neighbors relative to near neighbors. Our results lend support for the idea that selfish herd behavior can arise from localized movement rules under natural selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号