首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13603篇
  免费   594篇
  国内免费   266篇
  2024年   14篇
  2023年   88篇
  2022年   116篇
  2021年   181篇
  2020年   228篇
  2019年   225篇
  2018年   285篇
  2017年   220篇
  2016年   218篇
  2015年   338篇
  2014年   470篇
  2013年   667篇
  2012年   348篇
  2011年   427篇
  2010年   363篇
  2009年   446篇
  2008年   483篇
  2007年   588篇
  2006年   583篇
  2005年   484篇
  2004年   505篇
  2003年   479篇
  2002年   438篇
  2001年   325篇
  2000年   342篇
  1999年   350篇
  1998年   277篇
  1997年   296篇
  1996年   294篇
  1995年   292篇
  1994年   311篇
  1993年   288篇
  1992年   279篇
  1991年   293篇
  1990年   247篇
  1989年   255篇
  1988年   241篇
  1987年   232篇
  1986年   218篇
  1985年   243篇
  1984年   293篇
  1983年   167篇
  1982年   300篇
  1981年   230篇
  1980年   168篇
  1979年   127篇
  1978年   50篇
  1977年   73篇
  1976年   29篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 796 毫秒
991.
992.
We investigated the dynamic expression of calcium transporters, TRPV5 and TRPV6, in placenta and bone to determine their role in maternal and fetal calcium balance during gestation. In placenta, TRPV5 was expressed predominantly in syncytiotrophoblasts of the labyrinthine zone, whereas TRPV6 was expressed in spongiotrophoblasts of the junction zone. In bone, the two transporters were found in osteoblasts, osteoclasts, cartilage and bone matrices. During the first half of gestation, TRPV5 and TRPV6 levels in bone were increased on pregnancy day (P) 0.5, then decreased on P3.5 followed by a slight increase on P6.5. During the second half of pregnancy, both the proteins and their mRNAs gradually increased from P9.5 to P15.5?P17.5 in both bone and placenta, followed at parturition by relatively high amounts in placenta, but markedly decreased amounts in bone. The expression pattern is likely related to the fetal and maternal calcium requirement during gestation, which may be regulated by estrogen and other hormones, because the fetal demand for calcium is greatest during the last few days of gestation for rats; maternal calcium metabolism is designed to meet the calcium needs of the fetus during this period. We found that TRPV5 and TRPV6 are involved in calcium transport in the placenta and bone, and therefore play a role in calcium homeostasis during embryonic and fetal development.  相似文献   
993.
994.
Global climate change can significantly influence oceanic phytoplankton dynamics, and thus biogeochemical cycles and marine food webs. However, associative explanations based on the correlation between chlorophyll‐a concentration (Chl‐a) and climatic indices is inadequate to describe the mechanism of the connection between climate change, large‐scale atmospheric dynamics, and phytoplankton variability. Here, by analyzing multiple satellite observations of Chl‐a and atmospheric conditions from National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis datasets, we show that high‐latitude atmospheric blocking events over Alaska are the primary drivers of the recent decline of Chl‐a in the eastern North Pacific transition zone. These blocking events were associated with the persistence of large‐scale atmosphere pressure fields that decreased westerly winds and southward Ekman transport over the subarctic ocean gyre. Reduced southward Ekman transport leads to reductions in nutrient availability to phytoplankton in the transition zone. The findings describe a previously unidentified climatic factor that contributed to the recent decline of phytoplankton in this region and propose a mechanism of the top‐down teleconnection between the high‐latitude atmospheric circulation anomalies and the subtropical oceanic primary productivity. The results also highlight the importance of understanding teleconnection among atmosphere–ocean interactions as a means to anticipate future climate change impacts on oceanic primary production.  相似文献   
995.
RCK (regulating conductance of K+) domains are common regulatory domains that control the activity of eukaryotic and prokaryotic K+ channels and transporters. In bacteria these domains play roles in osmoregulation, regulation of turgor and membrane potential and in pH homeostasis. Whole-genome sequencing unveiled RCK gene redundancy, however the biological role of this redundancy is not well understood. In Bacillus subtilis, there are two closely related RCK domain proteins (KtrA and KtrC) that regulate the activity of the Ktr cation channels. KtrA has been well characterized but little is known about KtrC. We have characterized the structural and biochemical proprieties of KtrC and conclude that KtrC binds ATP and ADP, just like KtrA. However, in solution KtrC exist in a dynamic equilibrium between octamers and non-octameric species that is dependent on the bound ligand, with ATP destabilizing the octameric ring relative to ADP. Accordingly, KtrC-ADP crystal structures reveal closed octameric rings similar to those in KtrA, while KtrC-ATP adopts an open assembly with RCK domains forming a super-helix. In addition, both KtrC-ATP and -ADP octamers are stabilized by the signaling molecule cyclic-di-AMP, which binds to KtrC with high affinity. In contrast, c-di-AMP binds with 100-fold lower affinity to KtrA. Despite these differences we show with an E. coli complementation assay that KtrC and KtrA are interchangeable and able to form functional transporters with both KtrB and KtrD. The distinctive properties of KtrC, in particular ligand-dependent assembly/disassembly, suggest that this protein has a specific physiological role that is distinct from KtrA.  相似文献   
996.
The development of three‐dimensional (3D) cellular architectures during development and pathological processes involves intricate migratory patterns that are modulated by genetics and the surrounding microenvironment. The substrate composition of cell cultures has been demonstrated to influence growth, proliferation and migration in 2D. Here, we study the growth and dynamics of mouse embryonic fibroblast cultures patterned in a tissue sheet which then exhibits 3D growth. Using gradient light interference microscopy (GLIM), a label‐free quantitative phase imaging approach, we explored the influence of geometry on cell growth patterns and rotational dynamics. We apply, for the first time to our knowledge, dispersion‐relation phase spectroscopy (DPS) in polar coordinates to generate the radial and rotational cell mass‐transport. Our data show that cells cultured on engineered substrates undergo rotational transport in a radially independent manner and exhibit faster vertical growth than the control, unpatterned cells. The use of GLIM and polar DPS provides a novel quantitative approach to studying the effects of spatially patterned substrates on cell motility and growth.  相似文献   
997.
998.
999.
贾利霞  齐艳华 《植物学报》2022,57(3):263-275
水稻(Oryza sativa)是世界主要粮食作物。随着我国经济飞速发展, 耕地面积逐年减少, 提高水稻总产量唯有依靠单产的增加。粒重是决定水稻产量的重要因素之一, 其遗传稳定, 受外界环境因素影响较小。粒重由粒型和灌浆程度决定, 而粒型性状包括粒长、粒宽、粒厚和长宽比。水稻种子颖壳和胚乳发育决定了粒型和粒重, 颖壳细胞的增殖和扩张限制籽粒发育, 胚乳占据成熟种子的大部分体积。而生长素调控受精后颖壳和胚乳的发育, 是调控种子发育和影响水稻产量的重要植物激素。生长素的时空分布受生长素代谢、运输和信号转导的动态调节, 以维持生长素在种子发育中的最适水平。该文综述了生长素代谢、运输和信号转导调控水稻粒型的研究进展, 以期为深入探究生长素调控水稻粒型发育机制和提高水稻产量提供线索。  相似文献   
1000.
High-resolution experiments revealed that a single myosin-Va motor can transport micron-sized cargo on actin filaments in a stepwise manner. However, intracellular cargo transport is mediated through the dense actin meshwork by a team of myosin Va motors. The mechanism of how motors interact mechanically to bring about efficient cargo transport is still poorly understood. This study describes a stochastic model where a quantitative understanding of the collective behaviors of myosin Va motors is developed based on cargo stiffness. To understand how cargo properties affect the overall cargo transport, we have designed a model in which two myosin Va motors were coupled by wormlike chain tethers with persistence length ranging from 10 to 80 nm and contour length from 100 to 200 nm, and predicted distributions of velocity, run length, and tether force. Our analysis showed that these parameters are sensitive to both the contour and persistence length of cargo. While the velocity of two couple motors is decreased compared to a single motor (from 531 ± 251 nm/s to as low as 318 ± 287 nm/s), the run length (716 ± 563 nm for a single motor) decreased for short, rigid tethers (to as low as 377 ± 187 μm) and increased for long, flexible tethers (to as high as 1.74 ± 1.50 μm). The sensitivity of processive properties to tether rigidity (persistence length) was greatest for short tethers, which caused the motors to exhibit close, yet anti-cooperative coordination. Motors coupled by longer tethers stepped more independently regardless of tether rigidity. Therefore, the properties of the cargo or linkage must play an essential role in motor-motor communication and cargo transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号