首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13588篇
  免费   594篇
  国内免费   266篇
  2024年   14篇
  2023年   88篇
  2022年   102篇
  2021年   181篇
  2020年   228篇
  2019年   225篇
  2018年   285篇
  2017年   220篇
  2016年   218篇
  2015年   338篇
  2014年   470篇
  2013年   667篇
  2012年   348篇
  2011年   427篇
  2010年   363篇
  2009年   446篇
  2008年   483篇
  2007年   588篇
  2006年   583篇
  2005年   484篇
  2004年   505篇
  2003年   479篇
  2002年   438篇
  2001年   325篇
  2000年   342篇
  1999年   350篇
  1998年   277篇
  1997年   296篇
  1996年   294篇
  1995年   292篇
  1994年   311篇
  1993年   288篇
  1992年   279篇
  1991年   293篇
  1990年   247篇
  1989年   255篇
  1988年   241篇
  1987年   231篇
  1986年   218篇
  1985年   243篇
  1984年   293篇
  1983年   167篇
  1982年   300篇
  1981年   230篇
  1980年   168篇
  1979年   127篇
  1978年   50篇
  1977年   73篇
  1976年   29篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 23 毫秒
51.
E. B. Tucker 《Protoplasma》1987,137(2-3):140-144
Summary The effect of inhibition of cytoplasmic streaming on intercellular passage of carboxyfluorescein (CF) in staminal hairs ofS. purpurea was examined. Tip cells of staminal hairs were microinjected with buffered-CF. Cytoplasmic streaming was then inhibited by addition of KCN or NaN3 to the external bathing solution. In separate experiments, cytoplasmic streaming was inhibited by microinjection of cytochalasin D along with the buffered-CF. CF passage over a 5 minutes treatment period was monitored by video fluorescence microscopy and video intensity analysis. Cytoplasmic streaming ceased within 1 minute of inhibitor agent treatment, however, little change in the kinetics of intercellular passage was noted over the 5 minute experimental period. Th us, cytoplasmic streaming plays no major role in the regulation of intercellular passage of the hydrophilic, negatively charged molecule CF.The work is dedicated to professor Saal Zalik, Department of Plant Science, University of Alberta, on his 65th birthday.  相似文献   
52.
C. Amoros  C. Jacquet 《Hydrobiologia》1987,145(1):333-341
Methodological investigations, using remains of Bosminidae and Chydoridae, were undertaken to study the development of ecosystems in former river channels. Four biotopes from two former channels of different ages were used in this work. The Copepoda and Cladocera populations characterized each of the 11 sampling stations in relation to ecological factors, which are linked to the development stage in each ecosystem. Analysis of only the Bosminidae and Chydoridae populations presented practically the same information as an analysis of the total populations of Copepoda and Cladocera. The distribution of Bosminidae and Chydoridae remains taken from the surficial sediments at the deepest point of each former channel strongly resembled the distribution of the living populations sampled at several stations during one full year. Therefore, Bosminidae and Chydoridae remains could provide us with pertinent information concerning each phase of ecological succession that occurs in abandoned river channels.  相似文献   
53.
Epithelial Na channels are apparently pore-forming membrane proteins which conduct Na much better than any other biologically abundant ion. The conductance to Na can be 100 to 1000 times higher than that to K. The only other ions that can readily get through this channel are protons and Li. Small organic cations cannot pass through the channel, and water may also be impermeant. The selectivity properties of epithelial Na channels appear to be determined by at least three factors: A high field-strength anionic site, most likely a carboxyl residue of glutamic or aspartic acid residues on the channel protein, probably accounts for the high conductance through these channels of Na and Li and to the low conductance of K, Rb and Cs. A restriction in the size of the pore at its narrowest point probably accounts for the low conductance of organic cations as well as the possible exclusion of water molecules. The outer mouth of the channel appears to be negatively charged and may control access to the region of highest selectivity and may serve as a preliminary selectivity filter, attracting cations over anions. These conclusions are illustrated by the cartoon of the channel in Fig. 3. This picture is obviously both fanciful and simplified, but its general points will hopefully be testable. It leaves open a number of important questions, including: does amiloride block the channel by binding within the outer mouth? what does the inner mouth of the channel look like, and does this part of the channel contribute to selectivity? and what, if any, are the interactions between the features of the channel that impart selectivity and those that control the regulation of the channel by hormonal and other factors?  相似文献   
54.
Summary Nonstationary pump currents which have been observed in K+-free Na+ media after activation of the Na,K-ATPase by an ATP-concentration jump (see the preceding paper) are analyzed on the basis of microscopic reaction models. It is shown that the behavior of the current signal at short times is governed by electrically silent reactions preceding phosphorylation of the protein; accordingly, the main information on charge-translocating processes is contained in the declining phase of the pump current. The experimental results support the Albers-Post reaction scheme of the Na,K-pump, in which the translocation of Na+ precedes translocation of K+. The transient pump current is represented as the sum of contributions of the individual transitions in the reaction cycle. Each term in the sum is the product of a net transition rate times a dielectric coefficient describing the amount of charge translocated in a given reaction step. Charge translocation may result from the motion of ion-binding sites in the course of conformational changes, as well as from movement of ions in access channels connecting the binding sites to the aqueous media. A likely interpretation of the observed nonstationary currents consists in the assumption that the principal electrogenic step is the E1-P/P-E2 conformational transition of the protein, followed by a release of Na+ to the extracellular side. This conclusion is supported by kinetic data from the literature, as well as on the finding that chymotrypsin treatment which is known to block the E1-P/P-E2 transition abolishes the current transient. By numerical simulation of the Albers-Post reaction cycle, the proposed mechanism of charge translocation has been shown to reproduce the experimentally observed time behavior of pump currents.  相似文献   
55.
Summary Ca2+-activated K+ channels were studied in cultured medullary thick ascending limb (MTAL) cells using the patch-clamp technique in the inside-out configuration. The Ca2+ activation site was modified using N-bromoacetamide (NBA). 1mm NBA in the bath solution, at 2.5 m Ca2+ reduces the open probability,P o , of the channel to <0.01, without an effect on single-channel conductance. NBA-modified channels are still Ca2+-sensitive, requiring 25mm Ca2+ to raiseP o to 0.2. Both before and after NBA modification channel openings display at least two distributions, indicative of more than one open state. High Ca2+ (1mm) protects the channels from modification. Also presented is a second class of Ca2+-activated K+ channels which are normally present in MTAL cells which open infrequently at 10 m Ca2+ (P o =0.01) but have aP o of 0.08 at 1mm Ca2+. We can conclude (i) that NBA modifies the channel by shifting Ca2+-sensitivity to very high Ca2+, (ii) that NBA acts on a site involved in Ca2+ gating, and (iii) that a low affinity channel is present in the apical cell membrane with characteristics similar to those of normal channels modified with NBA.  相似文献   
56.
Summary Phloridzin-insensitive, Na+-independentd-glucose uptake into isolated small intestinal epithelial cells was shown to be only partially inhibited by trypsin treatment (maximum 20%). In contrast, chymotrypsin almost completely abolished hexose transport. Basolateral membrane vesicles prepared from rat small intestine by a Percoll® gradient procedure showed almost identical susceptibility to treatment by these proteolytic enzymes, indicating that the vesicles are predominantly oriented outside-out. These vesicles with a known orientation were employed to investigate the kinetics of transport in both directions across the membrane. Uptake data (i.e. movement into the cell) showed aK t of 48mm and aV max of 1.14 nmol glucose/mg membrane protein/sec. Efflux data (exit from the cell) showed a lowerK t of 23mm and aV max of 0.20 nmol glucose/mg protein/sec.d-glucose uptake into these vesicles was found to be sodium independent and could be inhibited by cytochalasin B. TheK t for cytochalasin B as an inhibitor of glucose transport was 0.11 m and theK D for binding to the carrier was 0.08 m.d-glucose-sensitive binding of cytochalasin B to the membrane preparation was maximized withl- andd-glucose concentrations of 1.25m. Scatchard plots of the binding data indicated that these membranes have a binding site density of 8.3 pmol/mg membrane protein. These results indicate that the Na+-independent glucose transporter in the intestinal basolateral membrane is functionally and chemically asymmetric. There is an outward-facing chymotrypsin-sensitive site, and theK t for efflux from the cell is smaller than that for entry. These characteristics would tend to favor movement of glucose from the cell towards the bloodstream.  相似文献   
57.
Summary Brush border membrane vesicles were prepared from mussel gills using differential and sucrose density gradient centrifugation. These vesicles contained both the maximal Na+-dependent alanine transport activity found in the gradient and the maximal activities of -glutamyl transpeptidase and alkaline phosphatase. Electron micrographs showed closed vesicles of approximately 0.1–0.5 m diameter. Transport experiments using these vesicles demonstrated a transient 18-fold overshoot in intravesicular alanine concentration in the presence of an inwardly directed Na+ gradient, but not under Na+ equilibrium conditions. A reduced overshoot (10-fold) was seen with an inwardly directed K+ gradient. Further studies revealed a broad cation selectivity, with preference for Na+, which was characteristic of alanine transport but not glucose transport in these membranes. The apparent amino acid specificity of the uptake pathway(s) was similar to that of intact gills and supported the idea of at least four separate pathways for amino acid transport in mussel gill brush border membranes. The apparent Michaelis constant for alanine uptake was approximately 7m, consistent with values forK t determined with intact tissue.  相似文献   
58.
Summary Voltage-dependent K channels could be identified in on-cell and excised patch-clamp records on membranes of isolated plant cell vacuoles. The current through a membrane patch is dominated by a channel population with a conductance of about 121 pS in symmetrical 250mm KCl solution. The single channel adopts at least two conducting levels the 121-pS state being most frequently observed. The channel shows outward rectification, representing a cation flux into the vacuoles. The rectification appears to be caused by a vanishing open probability and a short channel lifetime at hyperpolarizing voltages. A selectivity ratio of potassium over sodium of about 6 was derived as an estimate. Occasionally, an additional population of K channels with a single-channel conductance of approximately 18 pS is observed. This channel type exhibits outward rectification as well.  相似文献   
59.
The distribution of axonally transported gangliosides and glycoproteins along the sciatic nerve was examined from 3 h to 4 weeks following injection of[3H]glucosamine into the fifth lumbar dorsal root ganglion of adult rats. Incorporation of labeled precursor into these glycoconjugates reached a maximal level in the ganglion within 6 h. Outflow patterns of radioactivity for glycoproteins showed a well-defined crest with a transport rate of approximately 330 mm/day. In contrast, the crest of transported gangliosides was continuously attenuated, implying a significant deposition along the axon, and an alternative method of calculating velocity was required. Analysis of accumulation of labeled material at double ligatures demonstrated both anterograde and retrograde transport of glycoproteins and gangliosides and allowed for the calculation of an anterograde transport rate of about 270 mm/day for each. Additional evidence of ganglioside transport is provided in that the TLC pattern of transported radioactive gangliosides accumulating at a ligature is significantly different from the pattern seen in the dorsal root ganglion or following intraneural administration of the labeled precursor. These data indicate that gangliosides are transported at the same rapid rate as glycoproteins but are subject to a more extensive exchange with stationary material than are glycoproteins.  相似文献   
60.
Chromaffin cells both recently isolated or in culture present a high-affinity adenosine transporter with a Km value of 1 microM. When cells were exposed to nerve growth factor (NGF; 10 ng/ml), the adenosine transporter affinity decreased to 3 microM. This value was maintained from 3 days after plating to the end of the culture period. A change in the transport capacity was observed, with a significant increase (approximately 200-260%) in NGF-cultured cells throughout the period studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号