首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6066篇
  免费   254篇
  国内免费   162篇
  2024年   3篇
  2023年   48篇
  2022年   50篇
  2021年   94篇
  2020年   102篇
  2019年   118篇
  2018年   127篇
  2017年   128篇
  2016年   107篇
  2015年   171篇
  2014年   305篇
  2013年   390篇
  2012年   194篇
  2011年   276篇
  2010年   252篇
  2009年   248篇
  2008年   303篇
  2007年   335篇
  2006年   305篇
  2005年   255篇
  2004年   261篇
  2003年   242篇
  2002年   203篇
  2001年   127篇
  2000年   149篇
  1999年   161篇
  1998年   140篇
  1997年   174篇
  1996年   116篇
  1995年   118篇
  1994年   111篇
  1993年   111篇
  1992年   104篇
  1991年   81篇
  1990年   82篇
  1989年   75篇
  1988年   62篇
  1987年   51篇
  1986年   41篇
  1985年   58篇
  1984年   52篇
  1983年   28篇
  1982年   39篇
  1981年   25篇
  1980年   22篇
  1979年   21篇
  1978年   4篇
  1977年   5篇
  1976年   4篇
  1973年   2篇
排序方式: 共有6482条查询结果,搜索用时 343 毫秒
991.
在复杂生化系统的研究过程中,仿真与建模变得越来越重要.对于参与分子数量比较大的生化系统,通常可以采用常微分方程来解决这一问题.对于分子数量比较小的系统,离散粒子基础上的随机模拟方法更精确.然而目前还没有明确的理论方法来确定,对于实际问题用哪种方法能得到更合理的结果.因此需要在一个普遍研究的体系中,通过Ca~(2+)振荡传导信号来研究从随机行为到确定行为的过渡过程.本文以肝细胞中Ca~(2+)振荡对肝糖磷酸化酶激活随机效应为例,讨论了利用随机微分方程来解决分子数量比较小的生化系统的仿真与建模问题,利用细胞内Ca~(2+)有关的Li-Rinzel随机模型,研究了在磷酸化酶降解肝糖的磷酸化-去磷酸化作用循环过程中,三磷酸肌醇受体通道(IP_3R)释放Ca~(2+)的调控作用.结果表明,肝糖磷酸化酶的激活率随受体通道IP_3R的总数增大而减弱,而且三磷酸肌醇浓度比较小时出现相干共振.  相似文献   
992.
993.
The swimming performance of longnose dace Rhinichthys cataractae, the most widely distributed minnow (Cyprinidae) in North America, was assessed in relation to potential passage barriers. The study estimated passage success, maximum ascent distances and maximum sprint speed in an open‐channel flume over a range of water velocities and temperatures (10·7, 15·3 and 19·3° C). Rhinichthys cataractae had high passage success (95%) in a 9·2 m flume section at mean test velocities of 39 and 64 cm s–1, but success rate dropped to 66% at 78 cm s–1. Only 20% of fish were able to ascend a 2·7 m section with a mean velocity of 122 cm s–1. Rhinichthys cataractae actively selected low‐velocity pathways located along the bottom and corners of the flume at all test velocities and adopted position‐holding behaviour at higher water velocities. Mean volitional sprint speed was 174 cm s–1 when fish volitionally sprinted in areas of high water velocities. Swimming performance generally increased with water temperature and fish length. Based on these results, fishways with mean velocities <64 cm s–1 should allow passage of most R. cataractae. Water velocities >100 cm s–1 within structures should be limited to short distance (<1 m) and structures with velocities ≥158 cm s–1 would probably represent movement barriers. Study results highlighted the advantages of evaluating a multitude of swimming performance metrics in an open‐channel flume, which can simulate the hydraulic features of fishways and allow for behavioural observations that can facilitate the design of effective passage structures.  相似文献   
994.
995.
996.
Protein phosphatase 2A (PP2A) is an enzyme consisting of three subunits: a scaffolding A subunit, a regulatory B subunit and a catalytic C subunit. PP2As were shown to play diverse roles in eukaryotes. In this study, the function of the Arabidopsis PP2A‐C5 gene that encodes the catalytic subunit 5 of PP2A was studied using both loss‐of‐function and gain‐of‐function analyses. Loss‐of‐function mutant pp2a‐c5‐1 displayed more impaired growth during root and shoot development, whereas overexpression of PP2A‐C5 conferred better root and shoot growth under different salt treatments, indicating that PP2A‐C5 plays an important role in plant growth under salt conditions. Double knockout mutants of pp2a‐c5‐1 and salt overly sensitive (sos) mutants sos1‐1, sos2‐2 or sos3‐1 showed additive sensitivity to NaCl, indicating that PP2A‐C5 functions in a pathway different from the SOS signalling pathway. Using yeast two‐hybrid analysis, four vacuolar membrane chloride channel (CLC) proteins, AtCLCa, AtCLCb, AtCLCc and AtCLCg, were found to interact with PP2A‐C5. Moreover, overexpression of AtCLCc leads to increased salt tolerance and Cl? accumulation in transgenic Arabidopsis plants. These data indicate that PP2A‐C5‐mediated better growth under salt conditions might involve up‐regulation of CLC activities on vacuolar membranes and that PP2A‐C5 could be used for improving salt tolerance in crops.  相似文献   
997.
The immune system protects our body against foreign pathogens. However, if it overshoots or turns against itself, pro-inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, or diabetes develop. Ions, the most basic signaling molecules, shape intracellular signaling cascades resulting in immune cell activation and subsequent immune responses. Mutations in ion channels required for calcium signaling result in human immunodeficiencies and highlight those ion channels as valued targets for therapies against pro-inflammatory diseases. Signaling pathways regulated by melastatin-like transient receptor potential (TRPM) cation channels also play crucial roles in calcium signaling and leukocyte physiology, affecting phagocytosis, degranulation, chemokine and cytokine expression, chemotaxis and invasion, as well as lymphocyte development and proliferation. Therefore, this review discusses their regulation, possible interactions and whether they can be exploited as targets for therapeutic approaches to pro-inflammatory diseases.  相似文献   
998.
The maxi‐anion channels (MACs) are expressed in cells from mammals to amphibians with ~60% exhibiting a phenotype called Maxi‐Cl. Maxi‐Cl serves as the most efficient pathway for regulated fluxes of inorganic and organic anions including ATP. However, its molecular entity has long been elusive. By subjecting proteins isolated from bleb membranes rich in Maxi‐Cl activity to LC‐MS/MS combined with targeted siRNA screening, CRISPR/Cas9‐mediated knockout, and heterologous overexpression, we identified the organic anion transporter SLCO2A1, known as a prostaglandin transporter (PGT), as a key component of Maxi‐Cl. Recombinant SLCO2A1 exhibited Maxi‐Cl activity in reconstituted proteoliposomes. When SLCO2A1, but not its two disease‐causing mutants, was heterologously expressed in cells which lack endogenous SLCO2A1 expression and Maxi‐Cl activity, Maxi‐Cl currents became activated. The charge‐neutralized mutant became weakly cation‐selective with exhibiting a smaller single‐channel conductance. Slco2a1 silencing in vitro and in vivo, respectively, suppressed the release of ATP from swollen C127 cells and from Langendorff‐perfused mouse hearts subjected to ischemia–reperfusion. These findings indicate that SLCO2A1 is an essential core component of the ATP‐conductive Maxi‐Cl channel.  相似文献   
999.
钾离子通道为组织细胞内分布最广、种类最多的离子通道,在细胞增殖、分化及肿瘤细胞的侵袭转移中起着关键作用。神经胶质瘤是颅内最多发的恶性肿瘤,目前其主要治疗方式为手术加术后放化疗,术后五年生存率较低,寻找其相关发病机制及化疗靶点具有重要意义。目前已有多项研究表明,多种钾离子通道在胶质瘤中呈特异性高表达,且与胶质瘤的增殖、分化有密切关系,一些钾离子通道可作为胶质瘤的诊断和预防因子,有望成为未来胶质瘤化疗的新靶点,研究钾离子通道与神经胶质瘤的关系对胶质瘤的诊断、预防和治疗有重要意义。本文主要对近年来钾离子通道与神经胶质瘤关系研究的新进展进行综述。  相似文献   
1000.
Obesity is associated with a loss of insulin-sensitivity and systemic dysglycemia, resulting in Type 2 diabetes, however the molecular mechanisms underlying this association are unclear. Through adipocyte patch-clamp studies, we recently showed that SWELL1 is required for the Volume-Regulated Anion Current (VRAC) in adipocytes and that SWELL1-mediated VRAC is activated by both mechanical and pathophysiological adipocyte expansion. We also demonstrated that adipocyte SWELL1 is required for maintaining insulin signaling and glucose homeostasis, particularly in the setting of obesity. Here we show that SWELL1 protein expression is induced in subcutaneous fat, visceral fat and liver in the setting of obesity. Long- term AAV/rec2-shRNA mediated SWELL1 knock-down in both fat and liver are associated with increased weight gain, increased adiposity and exacerbated insulin resistance in mice raised on a high-fat diet. These data further support the notion that SWELL1 induction occurs in insulin- sensitive tissues (liver and adipose) in the setting of over-nutrition and contributes to improved systemic glycemia by supporting enhanced insulin-sensitivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号