首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   110篇
  国内免费   559篇
  1013篇
  2024年   9篇
  2023年   17篇
  2022年   39篇
  2021年   38篇
  2020年   43篇
  2019年   47篇
  2018年   61篇
  2017年   49篇
  2016年   55篇
  2015年   53篇
  2014年   46篇
  2013年   51篇
  2012年   50篇
  2011年   36篇
  2010年   50篇
  2009年   48篇
  2008年   33篇
  2007年   38篇
  2006年   41篇
  2005年   33篇
  2004年   31篇
  2003年   21篇
  2002年   16篇
  2001年   8篇
  2000年   8篇
  1999年   9篇
  1998年   10篇
  1997年   4篇
  1996年   8篇
  1995年   4篇
  1994年   5篇
  1993年   6篇
  1992年   6篇
  1991年   9篇
  1990年   5篇
  1989年   6篇
  1988年   2篇
  1987年   7篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1958年   1篇
  1950年   1篇
排序方式: 共有1013条查询结果,搜索用时 15 毫秒
81.
Aphyllophoraceous fungi are expected to reflect changes in the environmental conditions caused by forest use. To reveal the effects of forest uses on the fungal community structure, we performed a 3‐month survey of aphyllophoraceous species in five forest types (undisturbed primary forest, isolated patches of primary forest, old and young fallow forest, and rubber plantations) in Sarawak, Malaysia in 2005. We used a canonical correspondence analysis (CCA) to reveal the relationships between fungal community composition and the environmental variables (canopy openness, soil water potential, amount and composition of coarse woody debris, litter mass, basal area, plant species composition). A total of 155 samples from 67 species were collected during the study period. The fungal species density represented by the number of species in a transect differed significantly among forest types. The fungal species density increased significantly with increasing number of pieces of coarse woody debris (CWD), but decreased significantly with increasing the scores of second axis of principal component analysis (PCA) for plant species composition. In the CCA ordination, automatic forward selection revealed that only the number of pieces of CWD significantly affected the fungal species composition. The occurrences of Flabellophora licmophora, Coriolopsis retropicta, Microporus vernicipes, and Amauroderma subrugosum were positively correlated with the number of pieces of CWD. Our study clearly demonstrated that forest use negatively affected aphyllophoraceous fungal diversity and suggest that the quantity of CWD would be an important determinant of fungal diversity and composition.  相似文献   
82.
杜仲是我国南方红壤丘陵区重要的水土保持经济树种,为了阐明人工杜仲林地表径流和土壤侵蚀的特征及其与降雨特征的关系,2002-2005年在典型的杜仲人工林设置径流小区,进行定位观测,结果表明:1)观测期间,研究区主要以降雨量(R)<25 mm、降雨强度(I)<5 mm·h-1的降雨为主;2)降雨量(R)、降雨量与降雨强度的乘积(R·I)、降雨侵蚀力(R30)与土壤侵蚀量和径流均表现出极显著的线性相关关系;在对特定的降雨条件下的坡面侵蚀进行预测的时候,用R30进行预测比用R·I更接近通用土壤流失方程降雨影响因子的内涵;3)对杜仲人工林径流深(Rd)与降雨侵蚀力(R30)的乘积(Rd·R30)与土壤侵蚀量进行拟合,结果表明,二者达到极显著线性相关性(r=0.685,P<0.01),比单一用径流进行坡面侵蚀预测更符合水蚀产沙过程.  相似文献   
83.
樟树人工林生态系统不同层次穿透水水化学特征   总被引:12,自引:0,他引:12  
对樟树人工林生态系统的大气降水、林冠层穿透水、灌木层穿透水和草本层滴透水中N、P、SiO2、K、Ca、Mg、Cu、Fe、Zn和Mn共10种养分元素含量进行了测定。结果表明,不同月份大气降水养分元素含量不同,各元素各月平均含量按大小排序为Ca>SiO2>Zn>NH4-N>K>NO3-N>Fe>Mg>Mn>P>Cu。大气降水经过林冠层后,林冠层穿透水、灌木层穿透水、草本层滴透水中各养分元素含量变化基本一致,均表现季节动态变化,大多数元素含量增加。林冠层穿透水、灌木层穿透水、草本层滴透水中各元素各月平均含量按大小排序分别为Ca>K>Zn>SiO2>NH4-N>NO3-N>Mg>Mn>Fe>P>Cu、Ca>K>Zn>SiO2>NH4-N>NO3-N>Mg>Fe>Mn>P>Cu和Ca>NH4-N>K>SiO2>NO3-N>Mn>Mg>Zn>Fe>P>Cu。林冠层穿透水和灌木层穿透水中Fe,草本层滴透水中Fe、Zn为负淋溶,其余各元素浓度有所增加。在上述3项中,除NO3-N、Fe、Zn外,草本层滴透水中其它养分元素的富集作用都强于其它2项。  相似文献   
84.
采用空间代替时间法和典型抽样法,以四川省威远县桉树(Eucalyptus robusta)人工林为研究对象,综合分析其林下植被物种组成及重要值、灌木层和草本层地上、地下和全株生物量以及物种多样性指数(Shannon-Wiener多样性指数H、Simpson优势度指数H′、丰富度指数D和Pielou均匀度指数JSW),探究林下植被的物种多样性和生物量在5个不同林龄(4,5,6,7,8年生)下的动态变化及二者之间的相关性。结果表明:调查到植物共有210种,隶属79科151属,草本层物种数多于灌木层。草本层的五节芒(Miscanthus floridulus)、芒萁(Dicranop?teris pedata)和灌木层的野牡丹(Melastoma malabathricum)、戟叶悬钩子(Rubus hastifolius)在不同林龄下都占据主要优势地位。随着林龄的增大,郁闭度加大,灌木层的D、H和H′值均表现为先增后减的规律;草本层D、H和H′值均呈先增后减再增再减的双峰趋势。草本层各生物量呈先增后减再增的变化趋势;灌木层各生物量呈先增后减的变化趋势。物种多样性与生物量呈显著正相关,草本层的D、H指数是影响生物量的直接因子。桉树人工林林下植被物种分布、组成、物种多样性和生物量对林龄变化的响应不同,表现为不同的动态特征规律,相关结果为我国西南地区桉树林管理提供了数据支撑。  相似文献   
85.
营建乡土阔叶树种人工纯林和针阔混交林是我国亚热带地区森林经营的发展趋势,但对人工纯林和针阔混交林土壤细菌群落结构及功能知之甚少。本研究以南亚热带乡土针叶树种马尾松、阔叶树种红椎人工纯林及二者的混交林为对象,运用细菌16S rRNA基因高通量测序技术和PICRUSt基因功能预测,分析了3种人工林不同土层(0~20、20~40和40~60 cm)土壤细菌群落的结构与功能。结果表明: 混交林和马尾松林土壤细菌群落结构相似,但与红椎林差异显著,红椎林土壤细菌群落多样性、生物通路代谢功能和氮循环功能低于马尾松林和混交林;土壤全氮、硝态氮和C/N是导致红椎林与马尾松林和混交林土壤细菌群落结构及功能差异的主要土壤理化因子。就土壤细菌群落结构与功能而言,在该地区营造红椎和马尾松针阔混交林要优于红椎纯林。  相似文献   
86.
87.
Age, genetics and social status of trees affect their sensitivity to environmental factors, and information about such effects is needed for comprehensive assessment of growth potential. Climatic sensitivity of radial increment (i.e., tree-ring width) of introduced European beech (Fagus sylvatica L.) of different generations and social status, growing in its northeasternmost stands in Europe, was studied by dendroclimatological methods. At present, the studied stands occur outside of the natural distribution area of the species, providing opportunity to study adaptability and potential growth of beech in novel environments under changing climate. The sensitivity of radial growth to climatic factors was modulated by the generation and social status (size) of trees. The first generation trees, which were propagated from the material transferred from the northern Germany, were highly sensitive to climatic factors and showed wide spectrum of responses. The dominant trees were particularly sensitive to June precipitation, indicating sensitivity to water deficit in summer. The suppressed trees were mainly sensitive to temperature in the dormant period. Tree-ring width of the second generation trees, which were propagated from the first generation stands, was mainly affected by water deficit in summer, yet the local factors, modulated the mechanisms of response. In one stand, tree-ring width was affected by conditions during the formation of tree-ring, indicating direct influence of weather conditions on xylogenesis. In the other stand, tree-ring width was correlated to weather conditions in the preceding year, suggesting influence via carbohydrate reserves. The effect of social status on climatic sensitivity in the second generation stands was considerably weaker, likely due to the natural and anthropogenic selection of the material best adapted for local conditions. The effect of climatic factors on radial growth of beech has shifted during the 20th century. The effect of autumn temperature has weakened, likely due to warming; the effect of factors related to water deficit in summer has intensified that could be related to both, changes in climate and ageing. The observed climate-growth relationships suggested that conditions in winter have become suitable for beech, yet careful selection of sites/regions with appropriate hydrological conditions appear necessary to counteract the increasing effect of water deficit, hence to ensure productivity of future beech sites in Latvia.  相似文献   
88.
To evaluate the effects on CO2 exchange of clearcutting a mixed forest and replacing it with a plantation, 4.5 years of continuous eddy covariance measurements of CO2 fluxes and soil respiration measurements were conducted in a conifer-broadleaf mixed forest in Hokkaido, Japan. The mixed forest was a weak carbon sink (net ecosystem exchange, −44 g C m−2 yr−1), and it became a large carbon source (569 g C m−2 yr−1) after clearcutting. However, the large emission in the harvest year rapidly decreased in the following 2 years (495 and 153 g C m−2 yr−1, respectively) as the gross primary production (GPP) increased, while the total ecosystem respiration (RE) remained relatively stable. The rapid increase in GPP was attributed to an increase in biomass and photosynthetic activity of Sasa dwarf bamboo, an understory species. Soil respiration increased in the 3 years following clearcutting, in the first year mainly owing to the change in the gap ratio of the forest, and in the following years because of increased root respiration by the bamboo. The ratio of soil respiration to RE increased from 44% in the forest to nearly 100% after clearcutting, and aboveground parts of the vegetation contributed little to the RE although the respiration chamber measurements showed heterogeneous soil condition after clearcutting.  相似文献   
89.
Free air CO2 enrichment (FACE) experiments in aggrading temperate forests and plantations have been initiated to test whether temperate forest ecosystems act as sinks for anthropogenic emissions of CO2. These FACE experiments have demonstrated increases in net primary production and carbon (C) storage in forest vegetation due to increased atmospheric CO2 concentrations. However, the fate of this extra biomass in the forest floor or mineral soil is less clear. After 6 years of FACE treatment in a short-rotation poplar plantation, we observed an additional sink of 32 g C m−2 y−1 in the forest floor. Mineral soil C content increased equally under ambient and increased CO2 treatment during the 6-year experiment. However, during the first half of the experiment the increase in soil C was suppressed under FACE due to a priming effect, that is, the additional labile C increased the mineralization of older SOM, whereas during the second half of the experiment the increase in soil C was larger under FACE. An additional sink of 54 g C m−2 y−1 in the top 10 cm of the mineral soil was created under FACE during the second half of the experiment. Although, this FACE effect was not significant due to a combination of soil spatial variability and the low number of replicates that are inherent to the present generation of forest stand FACE experiments. Physical fractionation by wet sieving revealed an increase in the C and nitrogen (N) content of macro-aggregates due to FACE. Further fractionation by density showed that FACE increased C and N contents of the light iPOM and mineral associated intra-macro-aggregate fractions. Isolation of micro-aggregates from macro-aggregates and subsequent fractionation by density revealed that FACE increased C and N contents of the light iPOM, C content of the fine iPOM and C and N contents of the mineral associated intra-micro-aggregate fractions. From this we infer that the amount of stabilized C and N increased under FACE treatment. We compared our data with published results of other forest FACE experiments and infer that the type of vegetation and soil base saturation, as a proxy for bioturbation, are important factors related to the size of the additional C sinks of the forest floor–soil system under FACE. Author Contribution: MRH conceived of and designed the study, performed research, analyzed data, and wrote the paper; GES conceived of and designed the study and performed research.  相似文献   
90.
根据对福建福安的3种不同茶园(天香有机茶园、北门高山茶园和溪柄平地茶园)的节肢动物群落消长动态调查。并经多样性分析,结果获知:福安3种茶园节肢动物群落的物种丰富度(s)和多样性指数(H)的大小顺序依次为:天香(S=19.64,H=2.537)〉北门(S=18.01,H=2.502)〉溪柄(S=17.59,H=2.297);而均匀度指数的大小顺序是:北门(J=0.621)〉天香(J=0.595)〉溪柄(J=0.559)。表明植被比较丰富、人为干扰较少的茶园,节肢动物群落的物种丰富度、多样性指数和均匀度指数较高,害、益虫群落易于保持较好的平衡状态,有利于减少(或不使用)化学农药、发展绿色无公害茶叶生产。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号