首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   4篇
  2023年   3篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   5篇
  2016年   5篇
  2015年   1篇
  2014年   5篇
  2013年   12篇
  2012年   6篇
  2011年   37篇
  2010年   44篇
  2009年   55篇
  2008年   50篇
  2007年   46篇
  2006年   31篇
  2005年   30篇
  2004年   31篇
  2003年   6篇
  2002年   16篇
  2001年   6篇
  2000年   4篇
  1999年   11篇
  1998年   7篇
  1997年   2篇
  1996年   5篇
  1995年   11篇
  1994年   1篇
  1991年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1978年   1篇
排序方式: 共有451条查询结果,搜索用时 281 毫秒
71.
Ordered intermetallic alloys have attracted extensive attention as advanced electrocatalysts for polymer electrolyte membrane fuel cells (PEMFCs) reactions with much improved activity and stability. Here, latest progress in tuning intermetallic Pt‐ and Pd‐based nanocrystals with tunable morphology and structure for catalyzing both the cathodic reduction of oxygen and anodic oxidation of fuels (e.g., methanol, ethanol and formic acid) in PEMFCs is highlighted. Making/tuning interesting intermetallic PtM (M = Fe, Co, Pb, Cu, etc.)‐based nanocrystals for boosting oxygen reduction reaction with high activity and stability by using/controlling high‐temperature annealing treatment is discussed. In all the reported Pt‐based intermetallic nanocrystals, controlling the degree of ordering under the proper high temperature treatment is the key for achieving the optimized electrocatalysis. In order to search for cheaper catalysts, the progress on making Pd‐based intermetallic nanocrystals is also discussed. Furthermore, future research directions are proposed and discussed to further enhance the efficiency of such unique intermetallic multimetallic nanocatalysts. This report aims to demonstrate the potential of ordered intermetallic strategy for boosting electrocatalysis and stimulating more research efforts in this field.  相似文献   
72.
The electrogenerated chemiluminescence (ECL) of platinum (II) octaethyl-porphyrin (PtOEP) in acetonitrile:methylene chloride (CH3CN:CH2Cl2, 50:50 v/v) and CH2Cl2 is reported. ECL was generated upon sweep to positive potentials using tri-n-propylamine (TPrA) as an oxidative-reductive coreactant. ECL efficiencies (?ecl) of 0.18 in CH3CN:CH2Cl2 (50:50 v/v) and 3.90 in methylene chloride were obtained using Ru(bpy)3(PF6)2 (bpy = 2,2′-bipyridine) as a relative standard (?ecl = 1). The ECL intensity peaks at a potential corresponding to oxidation of PtOEP and TPrA, and ECL emission spectra are nearly identical to photoluminescence emission spectra, indicating that emission is from the PtOEP triplet state.  相似文献   
73.
Complexes of the types cis- and trans-Pt(amine)2I2 containing cyclic amines were synthesized and studied mainly by IR and multinuclear NMR spectroscopies. The compounds were converted to cis- and trans-Pt(amine)2(NO3)2, which were also investigated. The hydrolysis and the aquation reactions of the latter compounds were then studied in D2O in different conditions of pH. In acidic medium, the aqueous product is [Pt(amine)2(D2O)2]2+ and for a few amines, [Pt(amine)2(D2O)(NO3)]+ was detected. In basic pH, the main product is Pt(amine)2(OD)2 and Pt(amine)2(OD)(NO3) was detected for several compounds. In neutral pH, the cis isomers form between two and four species in fresh solutions. The most shielded species in 195Pt NMR is the monoaqua-monohydroxo complex cis-[Pt(amine)2(D2O)(OD)]+ and the less shielded compound is the dihydroxo-bridged dimer [Pt(amine)2(μ-OD)2Pt(amine)2]2+, which were observed for all the compounds. For a few amines, the monohydroxo-bridged dimer [Pt(D2O)(amine)2(μ-OD)Pt(OD)(amine)2]2+ was detected and for cyclohexylamine, a fourth signal was assigned to a cyclic hydroxo-bridged trimer [(Pt(amine)2(μ-OD))3]3+. 195Pt NMR spectroscopy has shown that the concentration of the monomer decreases with time, while the concentration of the dimers increases. Only one product was observed for the trans isomers in neutral pH. The signal was assigned to the monoaqua-monohydroxo species trans-[Pt(amine)2(D2O)(OD)]+. The 13C and 1H NMR spectra of most of the complexes were measured. All the coupling constants 2,3J(195Pt-1H) and 2,3J(195Pt-13C) are larger in the cis compounds than in the trans isomers.  相似文献   
74.
Dinaphthylmethylarsine complexes of palladium(II) and platinum(II) with the formulae [MX2L2] (M = Pd, Pt; L = di(1-naphthyl)methylarsine = Nap2AsMe and X = Cl, Br, I), [M2Cl2(μ-Cl)2L2], [PdCl(S2CNEt2)L], [Pd2Cl2(μ-OAc)2L2] and [MCl2(PR3)L] (PR3 = PEt3, PPr3, PBu3, PMePh2) have been prepared. These complexes have been characterized by elemental analyses, IR, Raman, NMR (1H, 13C, 31P) and UV-vis spectroscopy. The stereochemistry of the complexes has been deduced from the spectroscopic data. The crystal structures of trans-[PdCl2(PEt3)(Nap2AsMe)] and of [Pd(S2CNEt2)2], a follow-up product, were determined. The UV-vis spectra of [MX2L2] complexes show a red shift on going from X = Cl to X = I. The complexes [PdX2L2] and [PtX2L2] are strongly luminescent in fluid solution and in the solid at ambient temperature.  相似文献   
75.
Several pentahalophenylplatinate complexes with Pt-Sn metal-metal bonds have been synthesized by facile insertion of SnCl2 into Pt-Cl bonds of the starting platinum substrates. The complexes have been characterized spectroscopically and, in the case of (NBu4)2[trans-Pt(SnCl3)2(C6F5)2] and (NBu4)2[trans-Pt2(μ-Cl)2(SnCl3)2(C6F5)2], the structures have been analyzed by X-ray diffraction. The reactivity of these derivatives towards neutral ligands has been explored. The electronic spectra of some selected derivatives have also been examined.  相似文献   
76.
Pt(II) complexes of the types K[Pt(R2SO)X3], NR4[Pt(R2SO)X3] and Pt(R2SO)2Cl2 (where X = Cl or Br) were characterized by multinuclear magnetic resonance spectroscopy (195Pt, 1H and 13C). In 195Pt NMR, the chloro ionic compounds have shown signals between −2979 and −3106 ppm, while the cis disubstituted complexes were observed at higher fields, between −3450 and −3546 ppm. The signal of the compound trans-Pt(DPrSO)2Cl2 was found at higher field (−3666 ppm) than its cis analogue (−3517 ppm), since π-back-donation is considerably less effective in the trans geometry. In 1H NMR, a single signal was observed for the sulfoxide in [Pt(DMSO)Cl3], but for the other more sterically hindered ligands, two series of resonances were observed for the protons in α and β positions. The coupling constant 3J(195Pt-1H) are between 15 and 33 Hz. The 13C NMR results were interpreted in relation to the concept of inversed polarization of the π sulfoxide bond. The 2J(195Pt-13C) values vary between 35 and 66 Hz, while a few 3J(195Pt-13C) couplings were observed (13-26 Hz). The crystal structures of five monosubstituted ionic compounds N(n-Bu)4[Pt(TMSO)Cl3], N(Me)4[Pt(DPrSO)Cl3], K[Pt(EMSO)Cl3], K[Pt(TMSO)Br3] · H2O and N(Et)4[Pt(DPrSO)Br3] and one disubstituted complex cis-Pt(DBuSO)2Cl2 were determined. The trans influence of the different ligands is discussed.  相似文献   
77.
The metal-mediated coupling between the nitriles RCN in the platinum(IV) complexes trans-[PtCl4(RCN)2] (RMe, Et, CH2Ph, Ph), cis/trans-[PtCl4(MeCN)(Me2SO)] and the newly synthesized bifunctional oximehydroxamic acid, viz. N,2-dihydroxy-5-(1-hydroxyiminoethyl)benzamide, proceeds smoothly in CH2Cl2 at 40-45 °C to accomplish the new metallaligands HNC(R)ONHC(O)C6H3(2-OH)(5-C(Me)NOH) with pendant oxime functionalities due to the regioselective addition of the reagent via its hydroxamic groups. The obtained iminoligands exist in hydroxamic/hydroximic tautomeric equilibrium in solution. The structures of the isolated compounds are based on elemental analyses (C, H, N), IR, 1D 1H, 13C{1H}, and 2D NMR correlation experiments, i.e. 1H,13C-COSY, 1H,13C long range COSY, 1H,15N-COSY, and 1H,15N long range COSY.  相似文献   
78.
Reactions of [Pt2(μ-S)2(PPh3)4] with the diarylthallium(III) bromides Ar2TlBr [Ar = Ph and p-ClC6H4] in methanol gave good yields of the thallium(III) adducts [Pt2(μ-S)2(PPh3)4TlAr2]+, isolated as their salts. The corresponding selenide complex [Pt2(μ-Se)2(PPh3)4TlPh2]BPh4 was similarly synthesised from [Pt2(μ-Se)2(PPh3)4], Ph2TlBr and NaBPh4. The reaction of [Pt2(μ-S)2(PPh3)4] with PhTlBr2 gave [Pt2(μ-S)2(PPh3)4TlBrPh]+, while reaction with TlBr3 gave the dibromothallium(III) adduct [Pt2(μ-S)2(PPh3)4TlBr2]+[TlBr4]. The latter complex is a rare example of a thallium(III) dihalide complex stabilised solely by sulfur donor ligands. X-ray crystal structure determinations on the complexes [Pt2(μ-S)2(PPh3)4TlPh2]BPh4, [Pt2(μ-S)2(PPh3)4TlBrPh]BPh4 and [Pt2(μ-S)2(PPh3)4TlBr2][TlBr4] reveal a greater interaction between the thallium(III) centre and the two sulfide ligands on stepwise replacement of Ph by Br, as indicated by shorter Tl-S and Pt?Tl distances, and an increasing S-Tl-S bond angle. Investigations of the ESI MS fragmentation behaviour of the thallium(III) complexes are reported.  相似文献   
79.
The compounds Pt(quinap)(CN)2, and [Cu(quinap)I]2 with quinap = 1-(2-diphenylphosphino-1-naphthyl)isoquinoline were synthesized. Quinap is a bidentate ligand which contains a isoquinoline and an arylphosphine group with CT acceptor properties. Accordingly, the Pt(II) and Cu(I) quinap complexes are characterized by a phosphorescence originating from the lowest-energy MLCT triplets with some IL admixture.  相似文献   
80.
Versatile synthetic routes have been applied to prepare the new asymmetric phosphine-phosphite ligands 8 and 12. The chiral ligands have been designed so that the corresponding ligating groups have similar electronic properties and steric bulk, but 8 forms 6-, while 12 forms 7-membered chelate rings in their coordination compounds. The chelate size variation results in a markedly different coordination behavior towards Pt(II). In their reactions with Pt(PhCN)2Cl2 at 1:1 stoichiometry 12 forms the expected Pt(12)Cl2 complex, while 8 gives the cation quantitatively. In the kinetically controlled reaction is the major product even at a 8:Pt(PhCN)2Cl2 = 1:2 ratio. Most interestingly, at 1:1 ligand to precursor ratio, cation rearranges to Pt(8)Cl2 within one day, indicating that the neutral complex is thermodynamically more favorable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号