首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   56篇
  国内免费   248篇
  2024年   1篇
  2023年   7篇
  2022年   20篇
  2021年   14篇
  2020年   28篇
  2019年   39篇
  2018年   27篇
  2017年   22篇
  2016年   27篇
  2015年   17篇
  2014年   36篇
  2013年   32篇
  2012年   24篇
  2011年   31篇
  2010年   28篇
  2009年   31篇
  2008年   27篇
  2007年   45篇
  2006年   28篇
  2005年   33篇
  2004年   21篇
  2003年   26篇
  2002年   24篇
  2001年   19篇
  2000年   19篇
  1999年   12篇
  1998年   8篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   7篇
  1993年   4篇
  1992年   8篇
  1991年   9篇
  1990年   5篇
  1989年   7篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有727条查询结果,搜索用时 31 毫秒
101.
以半干旱矿区典型分布的黑沙蒿为研究对象,通过野外原位不离体试验,模拟侵蚀拉拔破坏对黑沙蒿根系生长特性的影响,并分析其受损自修复能力,旨在揭示植物根系在脆弱生态区中抵御外力侵蚀的生存策略.结果 表明,拉拔破坏形成机械损伤后,根系生长速率和活性均明显降低,持续拉拔对二者的抑制作用显著大于瞬时拉拔,重度损伤产生的负反馈显著大...  相似文献   
102.
塔克拉玛干沙漠南缘风沙活动十分频繁, 风蚀和沙埋是该地区自然植被生长发育的重要影响因子。该文以塔克拉玛干沙漠南缘策勒绿洲-沙漠过渡带为研究区, 以该区域主要建群种植物骆驼刺(Alhagi sparsifolia)为研究对象, 对一次强沙尘天气过后沙丘表面5种不同风蚀沙埋状况的骆驼刺植物进行标定(包括10 cm风蚀、5 cm风蚀、不蚀不积、10 cm沙埋、30 cm沙埋), 天晴后测定其叶水势、叶片含水量、光合参数和叶绿素荧光等参数, 分析研究自然环境条件下风蚀和沙埋对骆驼刺水分和光合作用的影响。结果表明: (1)风蚀显著降低了骆驼刺叶水势和叶片含水量, 进而导致植物气孔导度降低, 并引起植物光合速率和蒸腾速率的下降。风蚀的植物水分利用效率低于沙埋, 特别是在10 cm风蚀深度明显降低。 (2)沙埋增加了骆驼刺的叶水势、叶片含水量和气孔导度, 并引起植物光合速率和蒸腾速率的上升, 水分利用效率也得到提升。(3)风蚀条件下骆驼刺所受胁迫增加, 但可以通过增加活性反应中心的数量和光化学效率来抵消胁迫造成的不利影响。沙埋条件下骆驼刺受胁迫减轻, 反应中心吸收的光能和用于光化学反应的能量随着沙埋程度增加而减小, 这是骆驼刺适应风沙环境的一种生存策略。(4)与5 cm风蚀以及10 cm沙埋相比, 10 cm风蚀显著抑制骆驼刺的生长, 30 cm沙埋则会显著促进骆驼刺的生长。  相似文献   
103.
Current erosion-control studies in mountainous catchments emphasize the effectiveness of bioengineering works in constructing vegetation barriers that are designed to trap and permanently retain sediment upstream of such barriers. Plant establishment and succession should result in colonisation of these sediment deposits, thereby improving the trapping capacity of the works. The aim of this study is to evaluate the ability of the natural vegetation to colonise and grow on sediment accumulated upstream of 29 bioengineering works. They were constructed on the channel bottom of two marly gullies in the mountainous Southern French Alps region, which has a Mediterranean climate. We analysed the soil seed bank in sediment deposits after a germination experiment conducted in the laboratory, where soil cores were placed in a non-limited water condition. We also determined the standing vegetation which developed on the sediment deposits on field sites over 2 years of drought (2003 and 2004). The results show that the number of plants was 80/m2 on average in the samples studied in the laboratory, vs. 31/m2 in 2003 and 20/m2 in 2004 on the field sites, with a total diversity of 40 species. Therefore, despite 2 years of drought, natural plant colonisation occurred on the sediment deposits. An improvement in soil water conditions slightly increases the capacity of the sediment deposits to allow seed germination. However, despite the initial success in vegetation colonisation, plant abundance and recovery were rather low, which suggests that vegetation established itself very slowly.  相似文献   
104.
Homegardens may serve as reservoirs of agro-biodiversity on highly fertile, anthropogenic Amazonian Dark Earth (ADE) soils of the Amazon basin. However, as these soils are used more intensively for market-oriented agriculture, we suspected a decrease in their agro-biodiversity. We present data obtained from surveys on 16 farms where ADE was present in the region of Manaus, Amazonas, Brazil. When farms were separated into two groups by market orientation, species richness on the farms was not significantly influenced by market orientation, but there was less dominance (i.e., more diversity) for homegardens in the low-market orientation group (P < 0.1). The proportion of native species was not affected by market orientation. Hence, while the most market-oriented farms retained high species richness, homegardens located on them contained higher proportions of commercially interesting species.  相似文献   
105.
106.
Erosion resulting from landslides is a serious problem in mountainous countries such as Nepal. To restore such sites it is essential to establish plant cover that protects the soil and reduces surface erosion. Mycorrhizal fungi growing in symbiosis with plants are essential in this respect because they improve both plant nutrient uptake and soil structure. We investigated the influence of organic matter and P amendment on recently produced biomass of bacteria and arbuscular mycorrhizal (AM) fungi in eroded slopes in Nepal. Eroded soil mixed with different types of organic matter or P was placed in mesh bags, which were buried around trees of Bauhinia purpurea and Leucaena diversifolia between June 2003 and December 2003 (the wet season) or between December 2003 and June 2004 (the dry season). Signature fatty acids were used to determine bacterial and AM fungal biomass after the 6‐month intervals. The amount and composition of AM fungal spores were analyzed in the mesh bags from the dry season. More microbial biomass was produced during the wet season than during the dry season. Furthermore, organic matter addition enhanced the production of AM fungal and bacterial biomass during both periods. The positive influence of organic matter addition on AM fungi could be an important contribution to plant survival in plantations on eroded slopes. Different AM spore communities and bacterial profiles were obtained with different organic amendments and this suggests a possible way of selecting for specific microbial communities in the management of eroded sites.  相似文献   
107.
In Mediterranean environments, gully erosion is responsible for large soil losses. It has since long been recognized that slopes under vegetation are much more resistant to soil erosion processes compared to bare soils and improve slope stability. Planting or preserving vegetation in areas vulnerable to erosion is therefore considered to be a very effective soil erosion control measure. Re-vegetation strategies for erosion control rely in most cases on the effects of the above-ground biomass in reducing water erosion rates, whereas the role of the below-ground biomass is often neglected or underestimated. While the above-ground biomass can temporally disappear in semi-arid environments, roots may still be present underground and play an important role in protecting the topsoil from being eroded. In order to evaluate the potential of plant species growing in Mediterranean environments to prevent shallow mass movements on gully or terrace walls, the root reinforcement effect of 25 typical Mediterranean matorral species (i.e. shrubs, grasses herbs, small trees) was assessed, using the simple perpendicular model of Wu et al. (Can Geotech J 16:19–33, 1979). As little information is available on Mediterranean plant root characteristics, root distribution data were collected in SE-Spain and root tensile strength tests were conducted in the laboratory. The power root tensile strength–root diameter relationships depend on plant species. The results show that the shrubs Salsola genistoides Juss. Ex Poir. and Atriplex halimus L. have the strongest roots, followed by the grass Brachypodium retusum (Pers.) Beauv. The shrubs Nerium oleander L. and the grass Avenula bromoides (Gouan) H. Scholz have the weakest roots in tension. Root area ratio for the 0–0.1 m topsoil ranges from 0.08% for the grass Piptatherum miliaceum (L.) Coss to 0.8% for the tree Tamarix canariensis Willd. The rush Juncus acutus L. provides the maximum soil reinforcement to the topsoil by its roots (i.e. 304 kPa). Grasses also increase soil shear strength significantly (up to 244 kPa in the 0–0.1 m topsoil for Brachypodium retusum (Pers.) Beauv.). The shrubs Retama sphaerocarpa (L.) Boiss. and Anthyllis cytisoides L. are increasing soil shear strength to a large extent as well (up to 134 and 160 kPa respectively in the 0–0.10 m topsoil). Whereas grasses and the rush Juncus acutus L. increase soil shear strength in the topsoil (0–0.10 m) to a large extent, the shrubs Anthyllis cytisoides (L.), Retama sphaerocarpa (L.) Boiss., Salsola genistoides Juss. Ex Poir. and Atriplex halimus L. strongly reinforce the soil to a greater depth (0–0.5 m). As other studies reported that Wu’s model overestimates root cohesion values, reported root cohesion values in this study are maximum values. Nevertheless, the calculated cohesion values are used to rank species according to their potential to reinforce the soil.  相似文献   
108.
Habitat fragmentation is known to generally reduce the size of plant populations and increase their isolation, leading to genetic erosion and increased between-population genetic differentiation. In Flanders (northern Belgium) Primula vulgaris is very rare and declining. Populations have incurred strong fragmentation for the last decades and are now restricted to a few highly fragmented areas in an intensively used agricultural landscape. Previous studies showed that small populations of this long-lived perennial herb still maintained high levels of genetic variation and low genetic differentiation. This pattern can either indicate recent gene flow or represent historical variation. Therefore, we used polymorphic microsatellite loci to investigate genetic variation and structure in adult (which may still reflect historical variation) and seedling (recent generation, thus affected by current processes) life stages. The recent generation (seedlings) showed a significant loss of observed heterozygosity (H o) together with lower expected heterozygosity (H e), a trend for higher inbreeding levels (F IS) and higher differentiation (F ST) between populations compared to the adult generation. This might result from (1) a reduction in effective population size, (2) higher inbreeding levels in the seedlings, (3) a higher survival of heterozygotes over time due to a higher fitness of heterozygotes (heterosis) and/or a lower fitness of homozygotes (inbreeding depression), (4) overlapping generations in the adult life stage, or (5) a lack of establishment of new (inbred) adults from seedlings due to degraded habitat conditions. Combining restoration of both habitat quality and gene flow between populations may be indispensable to ensure a sustainable conservation of fragmented populations.  相似文献   
109.
Arid and semiarid shrublands occupy extensive land areas over the world, are susceptible to desertification by anthropic use and can contribute to regional climate change. These prompt the interest to monitor and evaluate these lands adequately in order to detect early stages of degradation. Evaluation topics must refer to biology‐relevant characteristics of these systems, while simultaneously satisfying sampling consistency over extended landscape areas. We present an analysis of process‐relevant parameters related to changes in the spatial arrangement of the plant canopy of shrublands inferred from high‐resolution panchromatic aerial photos and Interferometric Synthetic Aperture Radar imagery. We obtained low‐altitude images systematically located along several gradients of land‐use intensity in a Patagonian Monte shrubland in Argentina. Images were digitized to spatial resolutions ranging from 0.09 to 0.72 m (pixel size) and the average values and an‐isotropic characteristics of the plant canopy patterns were quantified by means of a Fourier metric. We used radar‐derived imagery to overlay the panchromatic images on a digital elevation model in order to study the correspondence of potential runoff patterns and the spatial arrangement of plants. We related an‐isotropic features of the plant canopy images to the prevailing wind regime. Observed trends were further interpreted on the basis of a spatial‐explicit simulation model describing the dynamics of the main functional groups in the plant community. We conclude that early stages of anthropic‐driven dryland degradation in the Patagonian Monte can be characterized by the incipient un‐coupling of spatial vegetation patterns from those of runoff at a landscape scale, and a progressive coupling to the spatial pattern of the wind regime. The method and metrics we present can be used to quantify early desertification changes in other similar drylands at extended spatial scales.  相似文献   
110.
Dispersal of biota by humans is a hallmark of civilization, but the results are often unforeseen and sometimes costly. Like kudzu vine in the American South, some examples become the stuff of regional folklore. In recent decades, “invasion biology,” conservation-motivated scientists and their allies have focused largely on the most negative outcomes and often promoted the perception that introduced species are monsters. However, cases of monstering by scientists preceded the rise of popular environmentalism. The story of tamarisk (Tamarix spp.), flowering trees and shrubs imported to New England sometime before 1818, provides an example of scientific “monstering” and shows how slaying the monster, rather than allaying its impacts, became a goal in itself. Tamarisks’ drought and salt tolerance suggested usefulness for both coastal and inland erosion control, and politicians as well as academic and agency scientists promoted planting them in the southern Great Plains and Southwest. But when erosion control efforts in Arizona, New Mexico and Texas became entangled with water shortages, economic development during the Depression and copper mining for national defense during World War Two, federal hydrologists moved quickly to recast tamarisks as water-wasting foreign monsters. Demonstrating significant water salvage was difficult and became subsidiary to focusing on ways to eradicate the plants, and a federal interagency effort devoted specifically to the latter purpose was organized and continued until it, in turn, conflicted with regional environmental concerns in the late 1960s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号