首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24262篇
  免费   1186篇
  国内免费   1240篇
  2023年   229篇
  2022年   310篇
  2021年   450篇
  2020年   420篇
  2019年   567篇
  2018年   548篇
  2017年   486篇
  2016年   498篇
  2015年   573篇
  2014年   959篇
  2013年   1249篇
  2012年   762篇
  2011年   967篇
  2010年   760篇
  2009年   951篇
  2008年   1082篇
  2007年   1192篇
  2006年   1096篇
  2005年   966篇
  2004年   851篇
  2003年   844篇
  2002年   715篇
  2001年   638篇
  2000年   596篇
  1999年   616篇
  1998年   578篇
  1997年   499篇
  1996年   518篇
  1995年   510篇
  1994年   572篇
  1993年   504篇
  1992年   522篇
  1991年   551篇
  1990年   465篇
  1989年   415篇
  1988年   396篇
  1987年   366篇
  1986年   280篇
  1985年   325篇
  1984年   310篇
  1983年   173篇
  1982年   220篇
  1981年   237篇
  1980年   198篇
  1979年   161篇
  1978年   117篇
  1977年   118篇
  1976年   131篇
  1973年   42篇
  1972年   41篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
E. Komor  M. Thom  A. Maretzki 《Planta》1987,170(1):34-43
Suspension-cultured cells of sugarcane (Saccharum sp. hybrids) did not oxidize exogenously supplied NADH in the absence of ferricyanide (potassium hexacyanoferrate [III]), whereas they did at a low rate in the presence of ferricyanide. Concomitantly, ferricyanide was reduced at a slow rate. Neither a pH change nor a change in respiration was caused by the addition of NADH and-or ferricyanide, but ferricyanide was a strong inhibitor of sugar transport. In contrast to cells, protoplasts rapidly oxidized exogenous NADH. This oxidation was accompanied by an increase in oxygen consumption and a net proton disappearance from the medium. Exogenous ferricyanide was reduced only slowly by protoplasts. Simultaneous presence of NADH and ferricyanide produced two effects: 1) a very rapid stoichiometric oxidation of NADH and reduction of ferricyanide until one of the reaction compounds was exhausted, and 2) a nearly instantaneous inhibition of the slower phase of NADH oxidation, which was observed in the presence of NADH but absence of ferricyanide. The extra oxygen consumption and the alkalinization of the medium, as observed with NADH, were also immediately stopped by ferric ions and ferrous ions. The presence of NADH and ferricyanide caused a fast stoichiometric acidification of the medium. These results were taken as evidence that the oxidation of NADH in the absence of ferricyanide is not related to the NADH-ferricyanide-coupled redox reaction. Furthermore, addition of NADH caused some uncoupling of the protoplasts, an effect which would explain the strong acidification of the cell cytoplasm and the inhibition of various transport systems. The NADH-oxidizing systems oxidized both the -configurated pyridine nucleotide and the -configurated form. Since NADH-linked dehydrogenases usually do not work with -NADH (with the exception of the endoplasmic-reticulum-bound electron-transport system), the observed activities could have been derived from contaminating membranes and dying protoplasts in the suspension. All reported reactions partly or predominantly occurred in the supernatant of the protoplast suspension and increased considerably during incubation of the protoplasts. The rates and quantities of oxygen consumption, pH change, and ferricyanide reduction fitted with NADH oxidation in a stoichiometric ratio, which implied that all these reactions occurred in the extracellular space, without involving transmembrane steps. No evidence for a physiological role in energization of the plasmalemma was found.Abbreviation NADH -nicotinamide adenine dinucleotide reduced form  相似文献   
92.
H. Gerbling  B. Gerhardt 《Planta》1987,172(3):386-392
Ethylene treatment (approx. 20 l ·1-1 in air for 2 d) of tobacco (Nicotiana tabacum L. cv. Havana 425) plants markedly increases the endo--1,3-glucanase (EC 3.2.1.39) content of leaves. The antigenic form of the enzyme induced is the same one whose production is blocked by treating cultured cells with combinations of auxin (1.1 · 10-5 M -naphthaleneacetic acid) and cytokinin (1.4 · 10-6 M kinetin). Evidence is presented that cultured tobacco cells require ethylene for -1,3-glucanase accumulation: i) ethylene treatment increased the accumulation of \-1,3-glucanase in callus tissues >10 d after subculturing and in cell-suspension cultures; ii) callus tissues can produce ethylene; iii) conditions known to inhibit ethylene production (1 mM CoCl2; 33° C treatment) or ethylene action (approx. 1.6 mmol · 1-1 norbornadiene in air) inhibited -1,3-glucanase accumulation by callus tissues treated for 4 d following subculturing; and, these inhibitory effects were prevented by exogenous ethylene. Combinations of auxin and cytokinin blocked ethylene-induced accumulation of -1,3-glucanase by cell-suspension cultures. The results favor a model in which ethylene induces results favor a model in which ethylene induces 1,3-glucanase accumulation, and auxin and cytokinin inhibit this induction process.Abbreviations NAA -naphthaleneacetic acid - NDE norbornadiene  相似文献   
93.
The tomato (Lycopersicon esculentum (L.) Mill.) ghost plant is a mutant of the San Marzano cultivar affected in carotenoid biosynthesis. ghost plants exhibit a variable pattern of pigment biosynthesis during development. Cotyledons are green but true leaves are white. Green sectors, which appear to be clonal in origin, are frequently observed in the white tissue. Because of the lack of photosynthesis ghost plants have a very low viability in soil. We have developed a strategy for propagating ghost plants that employs organ culture to generate variegated green-white plants which, supported by the photosynthetic green areas, develop in soil to almost wild-type size. These plants were used to analyze the pigment content of the different tissues observed during development and plastid ultrastructure. Cotyledons and green leaves contain both colored carotenoids and chlorophyll but only the colorless carotenoid phytoene accumulates in white leaves. the plastids in the white tissue of ghost leaves lack internal membrane structures but normal chloroplasts can be observed in the green areas. The chromoplasts of white fruits are also impaired in their ability to form thylakoid membranes.  相似文献   
94.
Fang-Sheng Wu 《Planta》1987,171(3):346-357
The positively-charged fluorescent dye rhodamine 123 (r-123) specifically stains mitochondria in living plant protoplasts, suspensionculture cells, and root hairs. This dye functions as a vital stain and permits visualization of the localization, distribution and movement of the mitochondria. Dehydration of root hairs caused mitochondria to aggregate into clumps. Mitochondria were either homogenous or heterogeneous and were frequently seen to accumulate in the perinuclear regions of suspension-culture cells but not in those of protoplasts or root-hair cells. Dinitrophenol and high concentrations of ethyleneglycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid and KCl immediately eliminated fluorescence in r-123-stained mitochondria whereas ionomycin enhanced it. Treatment of seedlings with r-123 resulted in differential brightness of fluorescence in different tissues. Meristematic tissues, such as root and shoot tips, exhibited the brightest fluorescence. The cytotoxicity of r-123 in both germinating seedlings and suspension-culture cells was low. The specificity, sensitivity and low toxicity of r-123 should make it a useful tool in experiments designed to examine agents and conditions which affect the location, the physiological status or the viability of mitochondria.Abbreviations EGTA ethyleneglycol-bis-(-aminoethyl ether)N,N,N,N-tetraacetic acid - DAPI 46-diamidino-2-phenylindole - r-123 rhodamine 123  相似文献   
95.
Summary The Serratia marcescens chiA gene encodes a secreted chitinase activity which contributes to the fungal growth inhibition exhibited by this bacterium. The coding region from the chiA gene was fused to the promoter and 3 polyadenylation region of the Agrobacterium nopaline synthase gene. Site-directed mutagenesis of specific nucleotides surrounding the initiating AUG of the coding sequence of this chimeric gene resulted in up to an eight-fold increase in the amount of chitinase protein detected in transformed plant tissue. Analysis of the chiA mRNA indicated that these nucleotides also affected mRNA levels. At least 50% of the chitinase protein produced in transformed tobacco cells was the same molecular weight as the S. marcescen secreted protein.  相似文献   
96.
97.
Variation of intratissular carbohydrates during bud formation in root explants of Cichorium intybus cultivated in vitro .
During the cellular activation that begins with excision of root explants from Cichorium intybus L. var. Witloof cv. Zoom cultured in vitro, hydrolysis of fructose polymers, in particular of the polyfructosans (inulin) takes place. The products of degradation are used to cover the energetic needs connected with the increase of the mitotic activity. After day 2 the intracellular carbohydrates (sucrose and reducing sugars) develop differently according to further development of the explants. When growth of unorganized callus is favoured and organ formation inhibited by medium supplemented with auxin, fructose is accumulated; but under bud-forming conditions it is the amount of sucrose that increases. These differences were most notable between days 3 and 10 in culture, the period during which primordia occurred in the shoot-forming callus  相似文献   
98.
Summary Investigations into iron deficiency have been hindered by the lack of a satisfactory diagnostic tissue test, which in turn results from the total iron content of plant tissue commonly being an unreliable index of the iron status. Our measurements of chlorotic and normal leaves of field grown groundnut (Arachis hypogaea L.) showed that total iron was unsatisfactory as the measure of iron status of plant tissue. It was found that iron status was better assessed from an estimate of the ferrous iron content of fresh leaf materials obtained by extraction with o-phenanthroline. Extractable iron content increased with leaf age. Chlorotic buds or the first fully opened leaf always contained less than 6μg extractable-Fe/g fresh tissue. Approved for publication as ICRISAT Journal Article No. 307.  相似文献   
99.
Summary A greenhouse study in which 24, 54 and 71 per cent roots of wheat (Triticum aestivum L.) were pruned on the 73rd day from the date of planting (anthesis stage) showed that during a 7-day period following root pruning, total transpiration and leaf water potential were significantly lower (P=0.05) and the stomatal resistance was significantly higher (P=0.05) where 54 and 71 per cent roots were pruned, as compared to no root pruning or 24 per cent root pruning. The leaf relative water content, however, showed no significant differences. Thus about one-fourth root sytem could be reduced without adversely affecting the plant-water status.  相似文献   
100.
Advances in salt tolerance   总被引:6,自引:0,他引:6  
Summary Advances in and prospects for the development of salt tolerant crops are discussed. The genetic approach to the salinity problem is fairly new, but research has become quite active in a short span of time. Difficulties and opportunities are outlined. Salinity varies spatially, temporally, qualitatively, and quantitatively. In addition, the responses of plants to salt stress vary during their life cycle. Selection and breeding, including the use of wide crosses, are considered the best short-term approaches to the development of salt tolerant crops, but the new biotechnological and molecular biological techniques will make increasingly important contributions. Cooperation is called for among soil and water scientists, agronomists, plant physiologists and biochemists, cytologists, and plant geneticists, breeders, and biotechnologists. Given such cooperation and adequate support for these endeavors, the potential for increasing productivity in salt-affected areas can be realized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号