首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   1篇
  国内免费   3篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2011年   9篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1984年   4篇
  1983年   4篇
  1982年   8篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有75条查询结果,搜索用时 31 毫秒
41.
Phosphofructokinase from the posterior gills of the euryhaline crab Eriocheir sinensis acclimated to freshwater is likely regulated in part via phosphorylation induced by endogenous cyclic nucleotide-dependent protein kinases. Phosphofructokinase from gill extracts devoid of low molecular weight compounds by chromatography through a PD10 Sephadex column, incubated in the presence of cAMP or cGMP protein kinases activators (cAMP or cGMP, Mg-ATP and Mg2+), shows an increased catalytic activity. This treatment is accompanied by 32P incorporation into the proteins immunoprecipitated with anti-mammalian phosphofructokinase polyclonal antibodies cross-reacting with the analog crustacean enzyme. Our results indicate that the covalent modification induced by these nucleotide-dependent protein kinases activates the glycolytic enzyme by increasing its affinity for its substrate and, when the activation is specifically due to cAMP-dependent protein kinases, by also reducing the homotropic cooperativity between its multiple substrate binding sites.  相似文献   
42.
An active pyrophosphate-dependent phosphofructokinase containing a six residue polyhistidine tag has been cloned from Treponema pallidum, and characterized biochemically. The phosphofructokinase has pH optima for activity of 8.0 for both the forward and reverse reactions. The apparent K(m) for pyrophosphate was 0.042 mM (V(max) of 141 U mg(-1) protein) and for fructose-6-phosphate, 0.529 mM. The apparent K(m) for the reverse reaction for fructose-1,6-diphosphate was 0.267 mM (V(max) of 42.4 U mg(-1) protein). The enzyme appears to be both a dimer and non-allosteric.  相似文献   
43.
Substrate inhibition by ATP is a regulatory feature of the phosphofructokinases isoenzymes from Escherichia coli (Pfk-1 and Pfk-2). Under gluconeogenic conditions, the loss of this regulation in Pfk-2 causes substrate cycling of fructose-6-phosphate (fructose-6-P) and futile consumption of ATP delaying growth. In the present work, we have broached the mechanism of ATP-induced inhibition of Pfk-2 from both structural and kinetic perspectives. The crystal structure of Pfk-2 in complex with fructose-6-P is reported to a resolution of 2 Å. The comparison of this structure with the previously reported inhibited form of the enzyme suggests a negative interplay between fructose-6-P binding and allosteric binding of MgATP. Initial velocity experiments show a linear increase of the apparent K0.5 for fructose-6-P and a decrease in the apparent kcat as a function of MgATP concentration. These effects occur simultaneously with the induction of a sigmoidal kinetic behavior (nH of approximately 2). Differences and resemblances in the patterns of fructose-6-P binding and the mechanism of inhibition are discussed for Pfk-1 and Pfk-2, as an example of evolutionary convergence, because these enzymes do not share a common ancestor.  相似文献   
44.
45.
V-ATPases are conserved ATP-driven proton pumps that acidify organelles. Yeast V-ATPase assembly and activity are glucose-dependent. Glucose depletion causes V-ATPase disassembly and its inactivation. Glucose readdition triggers reassembly and resumes proton transport and organelle acidification. We investigated the roles of the yeast phosphofructokinase-1 subunits Pfk1p and Pfk2p for V-ATPase function. The pfk1Δ and pfk2Δ mutants grew on glucose and assembled wild-type levels of V-ATPase pumps at the membrane. Both phosphofructokinase-1 subunits co-immunoprecipitated with V-ATPase in wild-type cells; upon deletion of one subunit, the other subunit retained binding to V-ATPase. The pfk2Δ cells exhibited a partial vma growth phenotype. In vitro ATP hydrolysis and proton transport were reduced by 35% in pfk2Δ membrane fractions; they were normal in pfk1Δ. In vivo, the pfk1Δ and pfk2Δ vacuoles were alkalinized and the cytosol acidified, suggestive of impaired V-ATPase proton transport. Overall the pH alterations were more dramatic in pfk2Δ than pfk1Δ at steady state and after readdition of glucose to glucose-deprived cells. Glucose-dependent reassembly was 50% reduced in pfk2Δ, and the vacuolar lumen was not acidified after reassembly. RAVE-assisted glucose-dependent reassembly and/or glucose signals were disturbed in pfk2Δ. Binding of disassembled V-ATPase (V1 domain) to its assembly factor RAVE (subunit Rav1p) was 5-fold enhanced, indicating that Pfk2p is necessary for V-ATPase regulation by glucose. Because Pfk1p and Pfk2p are necessary for V-ATPase proton transport at the vacuole in vivo, a role for glycolysis at regulating V-ATPase proton transport is discussed.  相似文献   
46.
The glycolytic pathway has been considered a potential drug target against the parasitic protozoan species of Trypanosoma and Leishmania. We report the design and the synthesis of inhibitors targeted against Trypanosoma brucei phosphofructokinase (PFK) and Leishmania mexicana pyruvate kinase (PyK). Stepwise library synthesis and inhibitor design from a rational starting point identified furanose sugar amino amides as a novel class of inhibitors for both enzymes with IC50 values of 23 μM and 26 μM against PFK and PyK, respectively. Trypanocidal activity also showed potency in the low micromolar range and confirms these inhibitors as promising candidates for the development towards the design of anti-trypanosomal drugs.  相似文献   
47.
The GC-rich leuB gene (coding for 3-isopropylmalate dehydrogenase) of Thermus thermophilus is scarcely expressed in Escherichia coli, unless a leader open reading frame (ORF) is provided. We conducted experiments on nonexpressible plasmids and obtained a modified plasmid showing greatly enhanced expression: the degree of expression from the plasmid was higher than that from any other plasmid so far constructed. Sequence analysis of the plasmid showed that a 258-bp leader ORF overlapped with the initiation codon of leuB was newly formed as a consequence of the insertion of a 0.5-kb BamHI fragment derived from the E. coli chromosome. The degree of expression from the plasmid was further improved by shortening the leader ORF to 36 bp without changing the overlapping portion, and the flanking sequence between the promoter and the leader ORF was removed. The expression in E. coli of the pfk1 gene (coding for phosphofructokinase) of T. thermophilus was improved by the construction of a structure similar to that which enhanced the expression of the leuB gene. Based on the results, a practical method for the overexpression of GC-rich genes in E. coli is proposed. Received: November 26, 1996 / Accepted: May 17, 1997  相似文献   
48.
M. Rabinovitz 《Amino acids》1996,10(2):99-108
Summary When the tRNA of mammalian cells is incompletely charged due to amino acid deficiency or by analogs which cannot be activated, many metabolic events become limited. This rapid demise of cell function appears to be due to the inhibition of phosphofructokinase (PFK) by uncharged tRNA (FEBS Lett 302: 113 (1992)). Charged tRNA has been shown to be sequestered within the protein synthetic machinery, (Negrutskii, B. S. and Deutscher, M. P. (1992) Proc Natl Acad Sci USA 89: 3601) and would therefore be removed from an inhibitory role. Besides the direct demonstration that tRNA inhibits PFK in an assay regarded as indicative of its control mechanism, several reports in the literature support this model. These include 1) The rapid onset of inhibition of glycolysis and glucose uptake by intact cells upon amino acid deficiency and the similar lesion at the 43S ribosomal subunit on glucose or amino acid deprivation. 2) The recognition that unusually high concentrations of cAMP required to stimulate protein synthesis in energy depleted or gel filtered lysates correlates with its action on PFK as an analog of the positive effector, adenosine-5-monophosphate. 3) The often repeated observation that the product of PFK activity, fructose-1,6-diphosphate, is a stimulant of protein synthesis (see Jackson, R. J., et al. (1983) Eur J Biochem 131: 289). This diphosphate has been shown to be the proximate effector binding to eIF-2B, the guanine nucleotide exchange factor (Singh, L. P. Arror, A. R. and Wahba, A. J. (1994), FASEB J. 8: 279) which by releasing GDP bound to the inactive GDP: eIF-2 complex, permits the factor to initiate a new peptide chain. The above information supports the view that the block at the G1 restriction point in the cell cycle of normal cells brought about by amino acid deprivation is a result of inhibition of protein synthesis through the phosphofructokinase-uncharged tRNA mechanism. This is consistent with observations in the literature that tumor and transformed cells, which are more resistant to this block (Pardee, A. B., Proc Natl Acad Sci USA 71: 1286–1291 (1974)) have a higher phosphofructokinase activity or higher levels of fructose-1,6-diphosphate.Presented at the 4th International Congress on Amino Acids, Vienna, Austria, August 7–11, 1995. (Amino Acids (1995) 9: 23, Abstract).  相似文献   
49.
Summary Biochemical mechanisms underlying anaerobiosis were assessed in two Mediterranean bivalve species, Scapharca inaequivalvis and Venus gallina, with widely differing tolerances for oxygen lack. These species displayed LT50 values for anoxic survival at 17–18°C of 17 and 4 d, respectively. Succinate and alanine were the major products of 24 h anaerobic metabolism in both species but only S. inaequivalvis further metabolized succinate to propionate. Both species reduced metabolic rate while anoxic but metabolic arrest was more pronounced in S. inaequivalvis. Calculated ATP turnover rate (MATP) during exposure to N2-bubbled seawater was only 4.51% of the aerobic rate in S. inaequivalvis but was 12.68% in V. gallina. To counteract a greater load of acid end products, V. gallina foot showed a significantly greater buffering capacity, 23.38±0.20 slykes, compared to 19.6±0.79 slykes in S. inaequivalvis. The two species also differed distinctly in the enzymatic regulation of anaerobiosis. In V. gallina anoxia exposure caused only a small change in PFK kinetic parameters (a decrease in Ka AMP) and had no effect on glycogen phosphorylase. By contrast, S. inaequivalvis foot showed a strong modification of enzyme properties in anoxia. The percentage of glycogen phosphorylase in the a form dropped significantly only in S. inaequivalvis. Other changes included alterations in the properties of PFK leading to a less active enzyme form in anoxia. Compared to the aerobic enzyme form, PFK from anoxic foot showed a reduced affinity for fructose-6-P (Km increased 2.4-fold), greater inhibition by ATP (I50 decreased 6.8-fold), and an increase in sensitivity to AMP activation (Ka decreased by 50%). These enzyme changes appear to be key to a glycolytic rate depression during anaerobiosis in S. inaequivalvis foot muscle.Abbreviations EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycol-bis-(2-aminoethyl)-tetraacetic acid - Fructose-2,6-P 2 fructose-2,6-bisphosphate - Fructose-6-P fructose-6-phosphate - K a AMP Activation constant (concentration of AMP required to increase the reaction to twice the rate it shows in the absence of AMP) - MATP ATP turnover rate - P i inorganic phosphate - PCA Perchloric acid - PFK 6-phosphofructo-1-kinase - TCA Trichloroacetic acid  相似文献   
50.
Summary The mechanisms of glycolytic rate control during hibernation in the ground squirrel Spermophilus lateralis were investigated in four tissues: heart, liver, kidney, and leg muscle. Overall glycogen phosphorylase activity decreased significantly in liver and kidney to give 50% or 75% of the activity found in the corresponding euthermic organs, respectively. The concentration of fructose-2,6-bisphosphate (F-2,6-P2) decreased significantly in heart and leg muscle during hibernation to 50% and 80% of euthermic tissue concentrations, respectively, but remained constant in liver and kidney. The overall activity of pyruvate dehydrogenase (PDH) in heart and kidney from hibernators was only 4% of the corresponding euthermic values. Measurements of phosphofructokinase (PFK) and pyruvate kinase (PK) kinetic parameters in euthermic and hibernating animals showed that heart and skeletal muscle had typical rabbit skeletal M-type PFK and M1-type PK. Liver and kidney PFK were similar to the L-type enzyme from rabbit liver, whereas liver and kidney PK were similar to the M2 isozyme found primarily in rabbit kidney. The kinetic parameters of PFK and PK from euthermic vs hibernating animals were not statistically different. These data indicate that tissue-specific phosphorylation of glycogen phosphorylase and PDH, as well as changes in the concentration of F-2,6-P2 may be part of a general mechanism to coordinate glycolytic rate reduction in hibernating S. lateralis.Abbreviations ADP adenosine diphosphate - AMP adenosine monophosphate - ATP adenonine triphoshate - EDTA ethylenediaminetetra-acetic acid - EGTA ethylene glycol tetra-acetic acid - F-6-P fructose 6-phosphate - F-1,6-P2 fructose 1,6-bisphosphate - F-2,6-P2 fructose-2,6-bisphosphate - K a activation coefficient - I50 concentration of inhibitor which reduces control activity by 50% - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PFK 6-phosphofructo-1-kinase - PK pyruvate kinase  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号