首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112700篇
  免费   6284篇
  国内免费   8079篇
  2023年   1193篇
  2022年   1416篇
  2021年   2649篇
  2020年   2927篇
  2019年   4460篇
  2018年   3270篇
  2017年   2525篇
  2016年   2908篇
  2015年   4344篇
  2014年   6141篇
  2013年   7703篇
  2012年   4734篇
  2011年   6505篇
  2010年   4729篇
  2009年   5102篇
  2008年   5443篇
  2007年   5586篇
  2006年   5223篇
  2005年   4565篇
  2004年   3816篇
  2003年   3322篇
  2002年   2887篇
  2001年   2279篇
  2000年   2024篇
  1999年   1878篇
  1998年   1803篇
  1997年   1624篇
  1996年   1533篇
  1995年   1740篇
  1994年   1609篇
  1993年   1506篇
  1992年   1545篇
  1991年   1283篇
  1990年   1192篇
  1989年   1101篇
  1988年   1086篇
  1987年   1080篇
  1986年   750篇
  1985年   1211篇
  1984年   1598篇
  1983年   1097篇
  1982年   1527篇
  1981年   1103篇
  1980年   1088篇
  1979年   1032篇
  1978年   599篇
  1977年   516篇
  1976年   433篇
  1975年   296篇
  1973年   324篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
51.
The physical and covalent binding of the carcinogen benzo(a)pyrene-7,8-diol-9,10-oxide (BaPDE) to poly(dG-dC).(dG-dC) and poly(dG-m5dC).(dG-m5dC) in the B and Z forms were studied utilizing absorbance, fluorescence and linear dichroism techniques. In the case of poly(dG-dC).(dG-dC) the decrease in the covalent binding of BaPDE with increasing NaCl concentration (0.1-4 M) as the B form is transformed to the Z form is attributed to the effects of high ionic strengths on the reactivity and physical binding of BaPDE to the polynucleotides; these effects tend to obscure differences in reactivities with the B and Z forms of the nucleic acids. In the case of poly(dG-m5dC).(dG-m5dC) the B-to-Z transition is induced at low ionic strength (2 mM NaCl + 10 microM Co(NH3)6Cl3) and the covalent binding is found to be 2-3-times lower to the Z form than to the B form. Physical binding of BaPDE by intercalation, which precedes the covalent binding reaction, is significantly lower in the Z form than in the B form, thus accounting, in part, for the lower covalent binding. The linear dichroism characteristics of BaPDE covalently bound to the Z and B forms of poly(dG-m5dC).(dG-m5dC) are consistent with nonintercalative, probably external conformations of the aromatic pyrenyl residues.  相似文献   
52.
In order to evaluate the importance of estrogen production in tumor and surrounding tissues, we measured mRNA expression levels of 5 enzymes participating to estrogen synthesis in situ and 4 breast cancer-related proteins in 27 pairs of tumor and non-malignant tissues. Steroid sulfatase (STS) mRNA was more frequently detected in tumor tissues rather than in their non-malignant counterparts. Estrogen sulfotransferase (EST) was constantly expressed with high level not only in tumor tissues but also in their surrounding non-malignant counterparts. In contrast, mRNA expression levels of aromatase, and 17β-hydroxysteroid dehydrogenase type I and II were relatively low and detected only in small proportion of the patients. We also measured the mRNA expression levels of the same nine genes in tumor tissues of 197 breast cancer patients, and analyzed relationship between the mRNA expression level and the clinicopathological parameters. The mRNA expression levels of STS, aromatase and erbB2 in tumor tissues increased as breast cancer progressed. The tumoral mRNA expression levels of STS, estrogen receptor β, and erbB2 in patients with recurrence were higher than those in patients without recurrence. Upregulation of STS expression plays an important role in tumor progression of human breast cancer and is considered to be responsible for estrogen production in tumor and surrounding tissues.  相似文献   
53.
54.
Summary An assay is described whereby Eco RI restriction fragment length polymorphisms of mitochondrial and chloroplast DNAs can definitively identify cytoplasms of interest in Brassica crop development. Restrictable mitochondrial and chloroplast DNA is extracted from as little as 2–3 g and 0.5 g leaf tissue, respectively, and the donor plants are able to continue to develop in a normal manner. An unknown cytoplasm can be identified in three days, which is a considerable saving in time and labor compared to the several years required by traditional methods. The assay is very inexpensive and should be established as a routine procedure in laboratories involved in sexual or somatic Brassica hybrid production.  相似文献   
55.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
56.
Comparative assays were made in a spectrophotometer and a microcalorimeter for the reaction between acetylcholinesterase (EC 3.1.1.7) and acetylthiocholine. The rate of light absorbance change and the rate of heat flow were measured from similar and simultaneous reactions in spectrophotometer and microcalorimeter, respectively. At the enzyme activity levels studied, i.e., 0.05–0.15 I.U. in calorimetry and 1–4 I.U. in spectrophotometry, the reaction rates were linear and showed first-order kinetics. A highly significant positive correlation was seen between the two methods (r = 0.997). More importantly, spectrophotometric assay with acetylthiocholine (which utilized a secondary reaction with chromagen, dithiobisnitrobenzoic acid) stood in highly significant positive correlation with calorimetric assays (which did not require a chromagen) either with the same substrate (r = 0.976) or with acetylcholine (r = 0.900). It appears that microcalorimetry can be used in preference to spectrophotometry for enzyme kinetic studies to overcome the complexity of reaction mixture and interference problems and with the advantage of using natural substrates.  相似文献   
57.
This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non‐invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH‐sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH‐sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole‐root tissues of A. thaliana is reported. The utility of pH‐sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated.  相似文献   
58.
MiR-204 is expressed in vascular smooth muscle cells (VSMC). However, its role in VSMC contraction is not known. We determined if miR-204 controls VSMC contractility and blood pressure through regulation of sarcoplasmic reticulum (SR) calcium (Ca2+) release. Systolic blood pressure (SBP) and vasoreactivity to VSMC contractile agonists (phenylephrine (PE), thromboxane analogue (U46619), endothelin-1 (ET-1), angiotensin-II (Ang II) and norepinephrine (NE) were compared in aortas and mesenteric resistance arteries (MRA) from miR-204−/− mice and wildtype mice (WT). There was no difference in basal systolic blood pressure (SBP) between the two genotypes; however, hypertensive response to Ang II was significantly greater in miR-204−/− mice compared to WT mice. Aortas and MRA of miR-204−/− mice had heightened contractility to all VSMC agonists. In silico algorithms predicted the type 1 Inositol 1, 4, 5-trisphosphate receptor (IP3R1) as a target of miR-204. Aortas and MRA of miR-204−/− mice had higher expression of IP3R1 compared to WT mice. Difference in agonist-induced vasoconstriction between miR-204−/− and WT mice was abolished with pharmacologic inhibition of IP3R1. Furthermore, Ang II-induced aortic IP3R1 was greater in miR-204−/− mice compared to WT mice. In addition, difference in aortic vasoconstriction to VSMC agonists between miR-204−/− and WT mice persisted after Ang II infusion. Inhibition of miR-204 in VSMC in vitro increased IP3R1, and boosted SR Ca2+ release in response to PE, while overexpression of miR-204 downregulated IP3R1. Finally, a sequence-specific nucleotide blocker that targets the miR-204-IP3R1 interaction rescued miR-204-induced downregulation of IP3R1. We conclude that miR-204 controls VSMC contractility and blood pressure through IP3R1-dependent regulation of SR calcium release.  相似文献   
59.
Binding constants for the binding of high-affinity heparin to antithrombin at different ionic strengths were determined by fluorescence titrations and were also estimated from dissociation curves of the heparin-antithrombin complex. These curves were monitored by near-ultraviolet circular dichroism or fluorescence. The dependence of the binding constant on the activity of NaCl suggested that maximally 5–6 charged groups are directly involved in the interaction between the two macromolecules. Major pH-dependent changes of the interaction, as evident by changes of the spectroscopic properties of the complex between the molecules, were found to occur below pH 5.5 and above pH 8.5. The acid change, which was irreversible, was most likely caused by an irreversible conformational change of antithrombin. At alkaline pH, however, the gross conformation of antithrombin was stable up to pH 12, while the affinity of high-affinity heparin for antithrombin began to decrease markedly at pH 8.5. The dissociation curve, which was reversible, had a midpoint around pH 9.5. This is compatible with the loss of affinity being caused by either a local conformational change, by ionization of tyrosine or by titration of one or more amino groups.  相似文献   
60.
Genetically modified Saccharomyces cerevisiae strain (YPB-G) which secretes a bifunctional fusion protein that contains both Bacillus subtilis -amylase and Aspergillus awamori glucoamylase activities was used for the direct conversion of starch into ethanol. Starch was either supplied initially to different nutrient media or added instantaneously to the reactor at various discrete time instants (pulse feeding). Stoichiometric modeling was used to investigate the effects of initial substrate concentration and growth rate of the recombinant yeast culture on ethanol production. Reaction stoichiometries describing both the anabolism and catabolism of the microorganism were used as an input to flux balance analysis (FBA), the preferred metabolic modeling approach since the constructed stoichiometric network was underdetermined. Experiments for batch and fed-batch systems at different substrate concentrations were analyzed theoretically in terms of flux distributions using ethanol production rate as the maximization criteria. Calculated ethanol rates were in agreement with experimental measurements, suggesting that this recombinant microorganism is sufficiently evolved to optimize its ethanol production. The function of the main pathways of yeast metabolism (PPP, EMP, TCA) are discussed together with the node analyses of glucose-6-P and pyruvate branch points. Theoretical node analysis revealed that if the split ratio in G6P branch point is changed by genetic manipulations, the ethanol yield would be affected considerably.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号