首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2318篇
  免费   42篇
  国内免费   32篇
  2392篇
  2024年   3篇
  2023年   23篇
  2022年   25篇
  2021年   50篇
  2020年   47篇
  2019年   47篇
  2018年   70篇
  2017年   51篇
  2016年   49篇
  2015年   55篇
  2014年   123篇
  2013年   167篇
  2012年   142篇
  2011年   162篇
  2010年   120篇
  2009年   122篇
  2008年   109篇
  2007年   113篇
  2006年   106篇
  2005年   97篇
  2004年   85篇
  2003年   56篇
  2002年   40篇
  2001年   20篇
  2000年   29篇
  1999年   30篇
  1998年   23篇
  1997年   37篇
  1996年   48篇
  1995年   47篇
  1994年   27篇
  1993年   22篇
  1992年   20篇
  1991年   23篇
  1990年   14篇
  1989年   10篇
  1988年   11篇
  1987年   12篇
  1986年   13篇
  1985年   27篇
  1984年   31篇
  1983年   21篇
  1982年   25篇
  1981年   13篇
  1980年   13篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1974年   3篇
  1973年   1篇
排序方式: 共有2392条查询结果,搜索用时 21 毫秒
41.
Sodium-dependence of glycylglycine (Gly-Gly) influx and stimulation of Na+ transport by Gly-Gly were studied in everted sacs, sheet preparations and brush-border membrane vesicles isolated from guinea-pig ileum. Gly-Gly influx was found to be independent of the presence of Na+, while Na+ transport was stimulated by Gly-Gly as evidenced by increases in transmural potential difference (PDt), short-circuit current (Isc) and Na+ influx. The change in PDt (ΔPDt) induced by Gly-Gly was a saturable function of Gly-Gly concentration, showing a Michaelis-Menten type relationship. The half-saturation concentration for Gly-Gly estimated from the electrical data was nearly identical with that estimated from influx data. At a constant Gly-Gly concentration the relationship between Isc and Na+ concentration was sigmoid, and the Hill coefficient was 1.5. Kinetic analysis according to Garay Garrahan indicates that each Gly-Gly carrier has two equivalent non-interacting binding sites for Na+, and that translocation of Na+ occurs when the two Na+ sites on the carrier loaded with Gly-Gly are occupied by Na+. However, our results indicate that the resultant Na+ flow is not capable of stimulating Gly-Gly translocation.  相似文献   
42.
A novel biosensor harnessing a conducting polymer functionalized with a copper ion specific peptide proved to be highly effective for electrochemical analysis of copper ions. The developed sensor comprised a transducer based on a conducting polymer (poly(3-thiopheneacetic acid)) electrode and a probe (tripeptide, Gly–Gly–His) selectively cognitive of copper ions. For functionalization of the electrode, the carboxylic group of the polymer was covalently coupled with the amine group of the tripeptide, and its structural features were confirmed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection infrared (ATR-IR) spectroscopy. The peptide modified polythiophene biosensor was used for the electrochemical analysis of various trace metal ions by square wave voltammetry. The electrode was found to be highly sensitive and selective to Cu2+ in the range of 0.02–20 μM with almost no cross binding to other metal ions such as Ni2+ and Pb2+. Furthermore, the developed sensor exhibited a high stability and reproducibility despite the repeated use of the sensor electrode and probe. With the advent of more diverse affinity bioprobes specific towards a broad range of analytes, the demonstrated strategy harnessing peptide modified polythiophene biosensor is likely to provide an excellent platform for the selective determination of trace amount of analytes whose detection is otherwise cumbersome.  相似文献   
43.
In mass spectrometry‐based proteomics, most conventional search engines match spectral data to sequence databases. These search databases thus play a crucial role in the identification process. While search engines can derive peptides in silico from protein sequences, this is usually limited to standard digestion algorithms. Customized search databases that provide detailed control over the search space can vastly outperform such standard strategies, especially in gel‐free proteomics experiments. Here we present Database on Demand, an easy‐to‐use web tool that can quickly produce a wide variety of customized search databases.  相似文献   
44.
Peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the COOH-terminal amidation of peptide hormones. We previously had found high expression of PAM in several regions of the developing rodent. To determine the function of PAM during mouse embryogenesis, we produced a null mutant of the PAM gene. Homozygous mutants die in utero between e14.5 and e15.5 with severe edema that is likely due to cardiovascular deficits. These defects include thinning of the aorta and carotid arteries and are very similar to those of the recently characterized adrenomedullin (AM) gene KO despite the presence of elevated immunoreactive AM in PAM KO embryos. No peptide amidation activity was detected in PAM mutant embryos, and there was no moderation of the AM-like phenotype that could be expected if any alternative peptide amidation mechanism exists in the mouse. Despite the proposed contribution of amidated peptides to neuronal cell proliferation, no alteration in neuroblast proliferation was observed in homozygous mutant embryos prior to lethality. Mice heterozygous for the mutant PAM allele develop normally and express wildtype levels of several amidated peptides despite having one half the wildtype levels of PAM activity and PAM protein. Nonetheless, both an increase in adiposity and a mild glucose intolerance developed in aged (>10 months) heterozygous mice compared to littermate controls. Ablation of PAM thus demonstrates an essential function for this gene during mouse development, while alterations in PAM activity in the adult may underlie more subtle physiologic effects.  相似文献   
45.
In the postantibiotic era, available treatment options for severe bacterial infections caused by methicillin-resistant Staphylococcus aureus have become limited. Therefore, new and innovative approaches are needed to combat such life-threatening infections. Virulence factor expression in S. aureus is regulated in a cell density-dependent manner using “quorum sensing,” which involves generation and secretion of autoinducing peptides (AIPs) into the surrounding environment to activate a bacterial sensor kinase at a particular threshold concentration. Mouse monoclonal antibody AP4-24H11 was shown previously to blunt quorum sensing-mediated changes in gene expression in vitro and protect mice from a lethal dose of S. aureus by sequestering the AIP signal. We have elucidated the crystal structure of the AP4-24H11 Fab in complex with AIP-4 at 2.5 Å resolution to determine its mechanism of ligand recognition. A key GluH95 provides much of the binding specificity through formation of hydrogen bonds with each of the four amide nitrogens in the AIP-4 macrocyclic ring. Importantly, these structural data give clues as to the interactions between the cognate staphylococcal AIP receptors AgrC and the AIPs, as AP4-24H11·AIP-4 binding recapitulates features that have been proposed for AgrC-AIP recognition. Additionally, these structural insights may enable the engineering of AIP cross-reactive antibodies or quorum quenching vaccines for use in active or passive immunotherapy for prevention or treatment of S. aureus infections.  相似文献   
46.
P450 enzymes comprising the human CYP4F gene subfamily are catalysts of eicosanoid (e.g., 20-HETE and leukotriene B4) formation and degradation, although the role that individual CYP4F proteins play in these metabolic processes is not well defined. Thus, we developed antibodies to assess the tissue-specific expression and function of CYP4F2, one of four CYP4F P450s found in human liver and kidney. Peptide antibodies elicited in rabbits to CYP4F2 amino acid residues 61-74 (WGHQGMVNPTEEG) and 65-77 (GMVNPTEEGMRVL) recognized on immunoblots only CYP4F2 and not CYP4F3b, CYP4F11 or CYP4F12. Immunoquantitation with anti-CYP4F2 peptide IgG showed highly variable CYP4F2 expression in liver (16.4+/-18.6pmol/mg microsomal protein; n=29) and kidney cortex (3.9+/-3.8 pmol/mg; n=10), with two subjects lacking the hepatic or renal enzyme entirely. CYP4F2 content in liver microsomes was significantly correlated (r> or =0.63; p<0.05) with leukotriene B4 and arachidonate omega-hydroxylase activities, which are both CYP4F2-catalyzed. Our study provides the first example of a peptide antibody that recognizes a single CYP4F P450 expressed in human liver and kidney, namely CYP4F2. Immunoquantitation and correlation analyses performed with this antibody suggest that CYP4F2 functions as a predominant LTB4 and arachidonate omega-hydroxylase in human liver.  相似文献   
47.
Production of bioactive peptides in an in vitro system   总被引:1,自引:0,他引:1  
An in vitro system for the preparation of bioactive peptides is described. This system couples three different posttranslational modification enzymes, prohormone convertases (PCs), carboxypeptidase E, and peptidyl alpha-amidating enzyme, to transform recombinant precursors into bioactive peptides. Three different precursors, mouse proopiomelanocortin (mPOMC), rat proenkephalin (rPE), and human proghrelin, were used as model systems. The conversion of mPOMC and rPE to smaller peptide products was measured by radioimmunoassay. After optimization of the system, excellent efficiency was obtained: about 85% of starting mPOMC was converted to des-acetyl alpha-melanocyte-stimulating hormone (alpha-MSH). For proenkephalin, 75 and 96% yields were obtained for the opioid peptides Met-RGL and Met-enk, respectively. Cell-based assays demonstrated that in-vitro-generated des-acetyl alpha-MSH successfully activated the melanocortin 4 receptor. Proghrelin digestion was used to screen the specificity of PC cleavage and to confirm the cleavage site by mass spectroscopy. Mature ghrelin was produced by human furin, mouse prohormone convertase 1, and human prohormone convertase 7 but not by mouse prohormone convertase 2. These results demonstrate that our in vitro system (1) can produce peptides in quantities sufficient to carry out functional analyses, (2) can be used to determine the specificity of proprotein convertases on recombinant precursors, and (3) has the potential to identify novel peptide functions on both known and orphan G-protein-coupled receptors.  相似文献   
48.
iTRAQ compatibility of peptide immobilized pH gradient isoelectric focusing   总被引:9,自引:0,他引:9  
Lengqvist J  Uhlén K  Lehtiö J 《Proteomics》2007,7(11):1746-1752
Immobilized pH gradient isoelectric focusing (IPG-IEF) has emerged as a highly promising alternative to strong-cation exchange fractionation as the first dimension in shot-gun proteomics. Herein is shown the compatibility of this method with iTRAQ isotope labeling for relative quantitation and validation of sequence matches from database searching.  相似文献   
49.
Haptoglobin-related protein (Hpr) is a component of a minor subspecies of high density lipoproteins (HDL) that function in innate immunity. Here we show that assembly of Hpr into HDL is mediated by its retained N-terminal signal peptide, an unusual feature for a secreted protein and the major difference between Hpr and the soluble acute phase protein haptoglobin (Hp). The 18-amino acid signal peptide is necessary for binding to HDL and interacts directly with the hydrocarbon region of lipids. Utilizing model liposomes, we show that the rate of assembly and steady-state distribution of Hpr in lipid particles is mediated by the physical property of lipid fluidity. Dye release assays reveal that Hpr interacts more rapidly with fluid liposomes. Conversely, steady-state binding assays indicate that more rigid lipid compositions stabilize Hpr association. Lipid association also plays a role in facilitating hemoglobin binding by Hpr. Our data may offer an explanation for the distinct distribution of Hpr among HDL subspecies. Rather than protein-protein interactions mediating localization, direct interaction with phospholipids and sensitivity to lipid fluidity may be sufficient for localization of Hpr and may represent a mechanism of HDL subspeciation.  相似文献   
50.

Background

To understand the mechanisms related to the ‘dynamical ordering’ of macromolecules and biological systems, it is crucial to monitor, in detail, molecular interactions and their dynamics across multiple timescales. Solution nuclear magnetic resonance (NMR) spectroscopy is an ideal tool that can investigate biophysical events at the atomic level, in near-physiological buffer solutions, or even inside cells.

Scope of review

In the past several decades, progress in solution NMR has significantly contributed to the elucidation of three-dimensional structures, the understanding of conformational motions, and the underlying thermodynamic and kinetic properties of biomacromolecules. This review discusses recent methodological development of NMR, their applications and some of the remaining challenges.

Major conclusions

Although a major drawback of NMR is its difficulty in studying the dynamical ordering of larger biomolecular systems, current technologies have achieved considerable success in the structural analysis of substantially large proteins and biomolecular complexes over 1 MDa and have characterised a wide range of timescales across which biomolecular motion exists. While NMR is well suited to obtain local structure information in detail, it contributes valuable and unique information within hybrid approaches that combine complementary methodologies, including solution scattering and microscopic techniques.

General significance

For living systems, the dynamic assembly and disassembly of macromolecular complexes is of utmost importance for cellular homeostasis and, if dysregulated, implied in human disease. It is thus instructive for the advancement of the study of the dynamical ordering to discuss the potential possibilities of solution NMR spectroscopy and its applications. This article is part of a Special Issue entitled “Biophysical Exploration of Dynamical Ordering of Biomolecular Systems” edited by Dr. Koichi Kato.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号