首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1883篇
  免费   216篇
  国内免费   95篇
  2024年   5篇
  2023年   71篇
  2022年   78篇
  2021年   155篇
  2020年   156篇
  2019年   189篇
  2018年   120篇
  2017年   66篇
  2016年   57篇
  2015年   66篇
  2014年   130篇
  2013年   162篇
  2012年   92篇
  2011年   114篇
  2010年   68篇
  2009年   60篇
  2008年   55篇
  2007年   64篇
  2006年   63篇
  2005年   67篇
  2004年   44篇
  2003年   48篇
  2002年   23篇
  2001年   21篇
  2000年   30篇
  1999年   25篇
  1998年   11篇
  1997年   9篇
  1996年   9篇
  1995年   15篇
  1994年   15篇
  1993年   11篇
  1992年   12篇
  1991年   11篇
  1990年   8篇
  1989年   8篇
  1988年   5篇
  1987年   7篇
  1986年   7篇
  1985年   10篇
  1984年   6篇
  1983年   3篇
  1982年   7篇
  1981年   2篇
  1980年   3篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
排序方式: 共有2194条查询结果,搜索用时 31 毫秒
991.
In the relatively short period of time since their discovery, microRNAs have been shown to control many important cellular functions such as cell differentiation, growth, proliferation and apoptosis. In addition, microRNAs have been demonstrated as key drivers of many malignancies and can function as either tumour suppressors or oncogenes. The haematopoietic system is not outside the realm of microRNA control with microRNAs controlling aspects of stem cell and progenitor self-renewal and differentiation, with many, if not all, haematological disorders associated with aberrant microRNA expression and function. In this review, we focus on the current understanding of microRNA control of haematopoiesis and detail the evidence for the contribution and clinical relevance of aberrant microRNA function to the characteristic block of differentiation in acute myeloid leukaemia.  相似文献   
992.
993.
Invasive pulmonary aspergillosis (IPA) is a leading cause of morbidity and mortality in haematological malignancy patients and hematopoietic stem cell transplant recipients1. Detection of IPA represents a formidable diagnostic challenge and, in the absence of a ''gold standard'', relies on a combination of clinical data and microbiology and histopathology where feasible. Diagnosis of IPA must conform to the European Organization for Research and Treatment of Cancer and the National Institute of Allergy and Infectious Diseases Mycology Study Group (EORTC/MSG) consensus defining "proven", "probable", and "possible" invasive fungal diseases2. Currently, no nucleic acid-based tests have been externally validated for IPA detection and so polymerase chain reaction (PCR) is not included in current EORTC/MSG diagnostic criteria.Identification of Aspergillus in histological sections is problematic because of similarities in hyphal morphologies with other invasive fungal pathogens3, and proven identification requires isolation of the etiologic agent in pure culture. Culture-based approaches rely on the availability of biopsy samples, but these are not always accessible in sick patients, and do not always yield viable propagules for culture when obtained.An important feature in the pathogenesis of Aspergillus is angio-invasion, a trait that provides opportunities to track the fungus immunologically using tests that detect characteristic antigenic signatures molecules in serum and bronchoalveolar lavage (BAL) fluids. This has led to the development of the Platelia enzyme immunoassay (GM-EIA) that detects Aspergillus galactomannan and a ''pan-fungal'' assay (Fungitell test) that detects the conserved fungal cell wall component (1 →3)-β-D-glucan, but not in the mucorales that lack this component in their cell walls1,4. Issues surrounding the accuracy of these tests1,4-6 has led to the recent development of next-generation monoclonal antibody (MAb)-based assays that detect surrogate markers of infection1,5.Thornton5 recently described the generation of an Aspergillus-specific MAb (JF5) using hybridoma technology and its use to develop an immuno-chromatographic lateral-flow device (LFD) for the point-of-care (POC) diagnosis of IPA. A major advantage of the LFD is its ability to detect activity since MAb JF5 binds to an extracellular glycoprotein antigen that is secreted during active growth of the fungus only5. This is an important consideration when using fluids such as lung BAL for diagnosing IPA since Aspergillus spores are a common component of inhaled air. The utility of the device in diagnosing IPA has been demonstrated using an animal model of infection, where the LFD displayed improved sensitivity and specificity compared to the Platelia GM and Fungitell (1 → 3)-β-D-glucan assays7.Here, we present a simple LFD procedure to detect Aspergillus antigen in human serum and BAL fluids. Its speed and accuracy provides a novel adjunct point-of-care test for diagnosis of IPA in haematological malignancy patients.  相似文献   
994.
Small bowel transplantation has become an accepted clinical option for patients with short gut syndrome and failure of parenteral nutrition (irreversible intestinal failure). In specialized centers improved operative and managing strategies have led to excellent short- and intermediate term patient and graft survival while providing high quality of life 1,3. Unlike in the more common transplantation of other solid organs (i.e. heart, liver) many underlying mechanisms of graft function and immunologic alterations induced by intestinal transplantation are not entirely known6,7. Episodes of acute rejection, sepsis and chronic graft failure are the main obstacles still contributing to less favorable long term outcome and hindering a more widespread employment of the procedure despite a growing number of patients on home parenteral nutrition who would potentially benefit from such a transplant. The small intestine contains a large number of passenger leucocytes commonly referred to as part of the gut associated lymphoid system (GALT) this being part of the reason for the high immunogenity of the intestinal graft. The presence and close proximity of many commensals and pathogens in the gut explains the severity of sepsis episodes once graft mucosal integrity is compromised (for example by rejection). To advance the field of intestinal- and multiorgan transplantation more data generated from reliable and feasible animal models is needed. The model provided herein combines both reliability and feasibility once established in a standardized manner and can provide valuable insight in the underlying complex molecular, cellular and functional mechanisms that are triggered by intestinal transplantation. We have successfully used and refined the described procedure over more than 5 years in our laboratory 8-11. The JoVE video-based format is especially useful to demonstrate the complex procedure and avoid initial pitfalls for groups planning to establish an orthotopic rodent model investigating intestinal transplantation.  相似文献   
995.
996.
The chemokine receptor CXCR4 favors the interaction of acute myeloid leukemia (AML) cells with their niche but the extent to which it participates in pathogenesis is unclear. Here, we show that CXCR4 expression at the surface of leukemic cells allowed distinguishing CXCR4high from CXCR4neg/low AML patients. When high levels of CXCR4 are expressed at the surface of AML cells, blocking the receptor function with small molecule inhibitors could promote leukemic cell death and reduce NOD/Shi-scid/IL-2Rγnull (NOG) leukemia-initiating cells (LICs). Conversely, these drugs had no efficacy when AML cells do not express CXCR4 or when they do not respond to chemokine CXC motif ligand 12 (CXCL12). Functional analysis showed a greater mobilization of leukemic cells and LICs in response to drugs, suggesting that they target the interaction between leukemic cells and their supportive bone marrow microenvironment. In addition, increased apoptosis of leukemic cells in vitro and in vivo was observed. CXCR4 expression level on AML blast cells and their migratory response to CXCL12 are therefore predictive of the response to the inhibitors and could be used as biomarkers to select patients that could potentially benefit from the drugs.  相似文献   
997.
The ubiquitin proteasome system plays an important role in normal and malignant hematopoiesis and relies on the concerted action of three enzyme families. The E2 ubiquitin conjugase UBCH8 (ubiquitin conjugating enzyme [human] 8) cooperates with the E3 ubiquitin ligases SIAH1 and SIAH2 (seven in absentia homolog 1/2) to mediate the proteasomal degradation of oncoproteins. One such protein is the leukemia fusion protein PML-RARα (promyelocytic leukemia-retinoic acid receptorα) that is associated with acute promyelocytic leukemia. A limited number of UBCH8 interaction partners that participate in the UBCH8-dependent depletion of cancer-relevant proteins are known. We report here that TRIAD1 (two RING fingers and DRIL [double RING finger linked] 1), an E3 ubiquitin ligase relevant for the clonogenic growth of myloid progenitors, binds UBCH8 as well as PML-RARα. Moreover, there is concurrent induction of TRIAD1 and UBCH8 upon combinatorial treatment of acute promyelocytic leukemia cells with the pro-apoptotic epigenetic modulator valproic acid and the differentiation inducing agent all-trans retinoic acid. However, in sharp contrast to SIAH1/SIAH2 and UBCH8, TRIAD1 binding to PML-RARα has no effect on its turnover. In summary, our data exclude TRIAD1 as crucial regulator of the leukemic determinant PML-RARα, but highlight the prominence of the UBCH8/SIAH axis in PML-RARα degradation.  相似文献   
998.
999.
1000.
Pediatric acute lymphoblastic leukemia (ALL) is treated with combination chemotherapy including mercaptopurine (6MP) as an important component. Upon its uptake, 6MP undergoes a complex metabolism involving many enzymes and active products. The prognostic value of all the factors engaged in this pathway still remains unclear. This study attempted to determine which components of 6MP metabolism in leukemic blasts and red blood cells are important for 6MP's sensitivity and toxicity. In addition, changes in the enzymatic activities and metabolite levels during the treatment were analyzed. In a cohort (N = 236) of pediatric ALL patients enrolled in the Dutch ALL-9 protocol, we studied the enzymes inosine-5′-monophosphate dehydrogenase (IMPDH), thiopurine S-methyltransferase (TPMT), hypoxanthine guanine phosphoribosyl transferase (HGPRT), and purine nucleoside phosphorylase (PNP) as well as thioguanine nucleotides (TGN) and methylthioinosine nucleotides (meTINs). Activities of selected enzymes and levels of 6MP derivatives were measured at various time points during the course of therapy. The data obtained and the toxicity related parameters available for these patients were correlated with each other. We found several interesting relations, including high concentrations of two active forms of 6MP—TGN and meTIN—showing a trend toward association with better in vitro antileukemic effect of 6MP. High concentrations of TGN and elevated activity of HGPRT were found to be significantly associated with grade III/IV leucopenia. However, a lot of data of enzymatic activities and metabolite concentrations as well as clinical toxicity were missing, thereby limiting the number of assessed relations. Therefore, although a complex study of 6MP metabolism in ALL patients is feasible, it warrants more robust and strict data collection in order to be able to draw more reliable conclusions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号