首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   850篇
  免费   121篇
  国内免费   187篇
  2024年   3篇
  2023年   18篇
  2022年   17篇
  2021年   36篇
  2020年   34篇
  2019年   35篇
  2018年   42篇
  2017年   35篇
  2016年   30篇
  2015年   39篇
  2014年   26篇
  2013年   51篇
  2012年   26篇
  2011年   36篇
  2010年   22篇
  2009年   40篇
  2008年   28篇
  2007年   43篇
  2006年   50篇
  2005年   39篇
  2004年   41篇
  2003年   33篇
  2002年   39篇
  2001年   33篇
  2000年   20篇
  1999年   32篇
  1998年   30篇
  1997年   20篇
  1996年   27篇
  1995年   27篇
  1994年   32篇
  1993年   19篇
  1992年   33篇
  1991年   14篇
  1990年   22篇
  1989年   16篇
  1988年   14篇
  1987年   8篇
  1986年   10篇
  1985年   8篇
  1984年   6篇
  1982年   7篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   4篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1158条查询结果,搜索用时 31 毫秒
41.
Flooding can be an important control of nitrogen (N) biogeochemistry in wetland ecosystems. In North American prairie marshes, spring flooding is a dominant feature of the physical environment that increases emergent plant production and could influence N cycling. I investigated how spring flooding affects N availability and plant N utilization in whitetop (Scolochloa festucacea) marshes in Manitoba, Canada by comparing experimentally spring-flooded marsh inside an impoundment with adjacent nonflooded marsh. The spring-flooded marsh had net N mineralization rates up to 4 times greater than nonflooded marsh. Total growing season net N mineralization was 124 kg N ha–1 in the spring-flooded marsh compared with 62 kg N ha–1 in the nonflooded marsh. Summer water level drawdown in the spring-flooded marsh decreased net N mineralization rates. Net nitrification rates increased in the nonflooded marsh following a lowering of the water table during mid summer. Growing season net nitrification was 33 kg N ha–1 in the nonflooded marsh but < 1 kg N ha–1 in the spring-flooded marsh. Added NO3 –1 induced nitrate reductase (NRA) activity in whitetop grown in pot culture. Field-collected plants showed higher NRA in the nonflooded marsh. Nitrate comprised 40% of total plant N uptake in the nonflooded marsh but <1% of total N uptake in the spring-flooded marsh. Higher plant N demand caused by higher whitetop production in the spring-flooded marsh approximately balanced greater net N mineralization. A close association between the presence of spring flooding and net N mineralization and net nitrification rates indicated that modifications to prairie marshes that change the pattern of spring inundation will lead to rapid and significant changes in marsh N cycling patterns.  相似文献   
42.
Carbon and nitrogen cycling in intertidal mud flat sediments in the Scheldt Estuary was studied using measurements of carbon dioxide, methane and nitrous oxide emission rates and pore-water profiles of CO2, ammonium and nitrate. A comparison between chamber measured carbon dioxide fluxes and those based on CO2 pore-water gradients using Fick's First law indicates that apparent diffusion coefficients are 2 to 28 times higher than bulk sediment diffusion coefficients based on molecular diffusion. Seasonal changes in gaseous carbon fluxes or CO2 pore water concentrations cannot be used directly, or in a simple way, to determine seasonal rates of mineralization, because of marked seasonal changes in pore-water storage and exchange parameters.The annual amount of carbon delivered to the sediment is 42 mol m–2, of which about 42% becomes buried, the remaining being emitted as methane (7%) or carbon dioxide (50%). Each year about 2.6 mol N m–2 of particulate nitrogen reaches the sediment; 1.1 mol m–2 is buried and 1.6 mol m–2 is mineralized to ammonium. Only 0.42 mol m–2 yr–1 of the ammonium produced escapes from the sediments, the remaining being first nitrified (1.2 mol m–2 yr–1) and then denitrified (1.7 mol m–2 yr–1). Simple calculations indicate that intertidal sediments may account for about 14% and 30% of the total estuarine retention of nitrogen and carbon, respectively.  相似文献   
43.
Toxic aromatic pollutants, concentrated in industrial wastes and contaminated sites, can potentially be eliminated by low cost bioremediation systems. Most commonly, the goal of these treatment systems is directed at providing optimum environmental conditions for the mineralization of the pollutants by naturally occurring microflora. Electrophilic aromatic pollutants with multiple chloro, nitro and azo groups have proven to be persistent to biodegradation by aerobic bacteria. These compounds are readily reduced by anaerobic consortia to lower chlorinated aromatics or aromatic amines but are not mineralized further. The reduction increases the susceptibility of the aromatic molecule for oxygenolytic attack. Sequencing anaerobic and aerobic biotreatment steps provide enhanced mineralization of many electrophilic aromatic pollutants. The combined activity of anaerobic and aerobic bacteria can also be obtained in a single treatment step if the bacteria are immobilized in particulate matrices (e.g. biofilm, soil aggregate, etc.). Due to the rapid uptake of oxygen by aerobes and facultative bacteria compared to the slow diffusion of oxygen, oxygen penetration into active biofilms seldom exceeds several hundred micrometers. The anaerobic microniches established inside the biofilms can be applied to the reduction of electron withdrawing functional groups in order to prepare recalcitrant aromatic compounds for further mineralization in the aerobic outer layer of the biofilm.Aside from mineralization, polyhydroxylated and chlorinated phenols as well as nitroaromatics and aromatic amines are susceptible to polymerization in aerobic environments. Consequently, an alternative approach for bioremediation systems can be directed towards incorporating these aromatic pollutants into detoxified humic-like substances. The activation of aromatic pollutants for polymerization can potentially be encouraged by an anaerobic pretreatment step prior to oxidation. Anaerobic bacteria can modify aromatic pollutants by demethylating methoxy groups and reducing nitro groups. The resulting phenols and aromatic amines are readily polymerized in a subsequent aerobic step.  相似文献   
44.
Several screening methods at the so-called ready biodegradability level are suitable to test poorly soluble substances. Typical for these tests is that mineralization is evaluated from monitoring oxygen uptake or carbon dioxide production. Unfortunately, they suffer from a rather low precision in the calculated percentage of mineralization caused by subtracting a too high inoculum control measurement from the response in the test system. Criteria for blank oxygen consumption, due to the metabolic activity of the inoculum, are proposed from which maximum amounts of activated sludge or secondary effluent per litre test medium can be derived to be used as an appropriate inoculum. Both for current and future standardized tests the precision of the method can be kept within acceptable margins. Inoculum material was sampled from 40 communal biological waste water treatment plants. From endogenous respiration rates it was derived that the concentration of secondary effluent in the Closed Bottle Test can be increased up to 50 mL/L but that in respirometry tests inoculated with activated sludge the appropriate concentration is 10 mg/L dry matter or below, depending of the design of the test system.List of abbreviations BOD biological oxygen demand - CBT Closed Bottle Test - C as inoculum concentration in mg dry solids of activated sludge per litre test medium - C ef inoculum concentration in ml secondary effluent per litre test medium - C ss dry weight content of activated sludge (g/L) - CFU colony forming units - DO7d dissolved oxygen concentration (mg/L) after 7 days - ISO International Organization for Standardization - NEN Dutch Organization for Standardization - O c oxygen capacity in mg oxygen per litre vessel volume - OECD Organisation for Economic Co-operation and Development - Ox as oxygen consumption after one week in mg oxygen per mg dry weight activated sludge - Ox ef oxygen consumption after one week in mg oxygen per mL secondary effluent - Ox ef [n] oxygen consumption after one week in mg oxygen per n mL secondary effluent - Ox flask oxygen uptake in mg per litre flask volume - RBT Ready Biodegradability Test - SLR sludge loading rate in kg O2/kg dry weight·d - ThOD theoretical oxygen demand - TPCBT Two Phase Closed Bottle Test - V a volumes of air and water per litre vessel - V w volume, respectively - a concentration of oxygen in air at 20° C and 101.5 kPa - s saturation oxygen concentration in te aqueous phase  相似文献   
45.
Osteopontin (OPN) is a multiphosphorylated glycoprotein found in bone and other normal and malignant tissues, as well as in the physiological fluids urine and milk. The present study demonstrates that bovine milk osteopontin is phosphorylated at 27 serine residues and 1 threonine residue. Phosphoamino acids were identified by a combination of amino acid analysis, sequence analysis of S-ethylcysteine-derivatized phosphopeptides, and mass spectrometric analysis. Twenty-five phosphoserines and one phosphothreonine were located in Ser/Thr-X-Glu/Ser(P)/Asp motifs, and two phosphoserines were found in the sequence Ser-X-X-Glu/Ser(P). These sequence motifs are identical with the recognition sequences of mammary gland casein kinase and casein kinase II, respectively. Examination of the phosphorylation pattern revealed that the phosphorylations were clustered in groups of approximately three spanned by unphosphorylated regions of 11-32 amino acids. This pattern is probably of importance in the multiple functions of OPN involving interaction with Ca2+ and inorganic calcium salts. Furthermore, three O-glycosylated threonines (Thr 115, Thr 124, and Thr 129) have been identified in a threonine- and proline-rich region of the protein. Three putative N-glycosylation sites (Asn 63, Asn 85, and Asn 193) are present in bovine osteopontin, but sequence and mass spectrometric analysis showed that none of these asparagines were glycosylated in bovine mammary gland osteopontin. Alignment analysis showed that the majority of the phosphorylation sites in bovine osteopontin as well as all three O-glycosylation sites were conserved in other mammalian sequences. This conservation of serines, even in otherwise less well-conserved regions of the protein, indicates that the phosphorylation of osteopontin at specific sites is essential for the function of the protein.  相似文献   
46.
Sulfur cycling in grassland and parkland soils   总被引:3,自引:3,他引:0  
A conceptual diagram of the S cycle in grassland soils is presented as a framework for discussing S cycling process studies. Changes in the mineralization of S and in the redistribution of35S-labeled sulfate among soil organic matter fractions were investigated during incubation of cropped and uncropped soils.Little mineralization or net immobilization of sulfur occurred in closed system incubations where the soils were left undisturbed throughout the incubations. Significantly more S was mineralized in open system incubations where the soils were leached periodically. Net mineralization was significantly greater in cropped soils compared with uncropped soils. The distribution of35S was significantly affected by the addition of various substrates (sulfate, cellulose or a combination of both) and by the presence of plants. Under conditions of high solution sulfate, the majority of35S incorporated was observed in the HI-reducible S fraction. When the solution sulfate concentrations were lower, there was a reduction in the proportion of35S incorporated into the HI-reducible S fraction. The results of these experiment will be discussed in relation to the hypotheses presented by McGill and Cole (1981) and the conceptual diagram of the S cycle in grassland soils.Contribution from a symposium on the role of sulfur in ecosystem processes held August 10, 1983, at the annual meeting of the A.I.B.S., Grand Forks, ND; Myron Mitchell, convenor.Publication No. R 353 of the Saskatchewan Institute of Pedology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N OWO  相似文献   
47.
Microbial mineralization of organic phosphate in soil   总被引:35,自引:0,他引:35  
Summary Phosphate-dissolving microorganisms were isolated from non-rhizosphere and rhizosphere of plants. These isolates included bacteria, fungi and actinomycetes. In broth cultures, Gram-negative short rod,Bacillus andStreptomyces species were found to be more active in solubilizing phosphate thanAspergillus, Penicillium, Proteus, Serratia, Pseudomonas andMicrococcus spp. The sterile soils mixed with isolated pure culture showed slower mineralization of organic phosphate than that of non-sterile soil samples at all incubation periods. Maximum amount of phosphate mineralization by isolated microorganisms were obtained at the 60th and the 75th day of incubation in sterile and non-sterile soils respectively. The mixed cultures were most effective in mineralizing organic phosphate and individuallyBacillus sp. could be ranked next to mixed cultures. Species ofPseudomonas andMicrococcus were almost the same as that of the control under both sterile and non-sterile conditions.  相似文献   
48.
Summary Starting in 1968 plant succession and nitrogen status in the top soil of an old field was investigated. The soil is a calcareous loam which was sterilized by heating. In the absence of human influence distinct successional stages with characteristic floristical and physiognomical features were observed. During the first six years vegetational development was characterized by competition between therophytes and hemicryptophytes. Agricultural treatments such as annual ploughing (spring, summer) and cutting (autumn) were found to change the trend of the succession.Five years after starting the experiment total nitrogen content in the top soil of the control area had increased slightly, while the ploughed plots persisted in their low values. A comparison of the nitrogen mineralisation between 1970 and 1974 showed decreasing amounts of mineral nitrogen in the later stage (1970: 67 kg Nmin/ha/30 weeks; 33 kg Nmin/ha/30 weeks). On the other hand, mineral nitrogen supply on the ploughed plots was not significantly different after the five-years-period. It is suggested that in old-field vegetation the external nitrogen cycle of the early therophyte stage changed to an internal one when long-lived hemicryptophytes, rhizome- and root-budding geophytes became dominant.Tables 1 to 4 show the vegetation development under different treatments; the figures represent average cover values per vegetation season using Londo's (1975) scale. Table 5 contains the total nitrogen concentration values in the uppermost of 10 cm of mineral soil, and Table 6 lists the values for soil volume, mean soil temperatures, average water content, and mineral nitrogen supplies for 1970 and 1974.
Contribution to the Symposium of the Working Group for Succession Research on Permanent Plots, held at Yerseke, the Netherlands, October 1975.  相似文献   
49.
Summary The effects of anthraquinones and some other quinonoid and phenolic compounds on mineralization of urea N in soils were studied by estimating the influence on urease activity and nitrification. Anthraquinones did not affect the mineralization of urea N but 1,4-naphthoquinone; 2-methyl-1,4-naphthoquinone; 2–3-dichlorohydroquinone; 4,6-di-tert.butyl-o-benzoquinone; 4-tert.butylpyrocatechol and 4,6-di-tert.butylpyrocatechol inhibited urease activity and nitrification. The hydrolysis of urea (100 ppm) was not prevented by partial reduction in urease activity. The effective substances also inhibited dehydrogenase activity.  相似文献   
50.
The solubilization and mineralization of (14)C-phenanthrene in soil-water systems was examined with several commercially available surface-active agents, viz., an alkyl ethoxylate C(12)E(4); two alkylphenol ethoxylate surfactants: C(8)PE(9.5) and C(9)PE(10.5); two sorbitan ethoxylate surfactants: the sorbitan monolaurate (Tween 20) and the sorbitan monooleate (Tween 80); two pairs of nonionic ethoxylate surfactant mixtures: C(12)E(4)/C(12)E(23) at a 1:1 ratio, and C(12-15)E(3)/C(12-15)E(9) at a 1:3 ratio; and two surfactants possessing relatively high critical micelle concentration (CMC) values and low aggregation numbers: CHAPS and octyglucoside. Surface tension experiments were performed to evaluate surfactant sorption onto soil and the surfactant doses required to attain the CMC in the soil-water systems. Surfactant solubilization of (14)C-phenanthrene commenced with the onset of micellization. The addition of surface-active agents was observed not to be beneficial to the microbial mineralization of phenanthrene in the soil-water systems and, for supra-CMC surfactant doses, phenanthrene mineralization was completely inhibited for all the surfactants tested. A comparison of solubilization, surface tension, and mineralization data confirms that the inhibitory effect on microbial degradation of phenanthrene is related to the CMC of the surfactant in the presence of soil. Additional tests demonstrated the recovery of mineralization upon dilution of surfactant concentration to sub-CMC levels, and a relatively high exit rate for phenanthrene from micelles. These tests suggest that the inhibitory effect is probably related to a reversible physiological surfactant micelle-bacteria interaction, possibly through partial complexing or release of membrane material with disrupting membrane lamellar structure. This study indicates that nonionic surfactant solubilization of sorbed hydrophobic organic compounds from soil may not be beneficial for the concomitant enhancement of soil bioremediation. Additional work is needed to address physicochemical processes for bioavailability enhancement, and effects of solubilizing agents on microorganisms for remediation and treatment of hydrophobic organic compounds and nonaqueous phase liquids. (c) 1992 John Wiley & Sons Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号