首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   690篇
  免费   26篇
  国内免费   41篇
  2023年   8篇
  2022年   6篇
  2021年   9篇
  2020年   13篇
  2019年   20篇
  2018年   17篇
  2017年   19篇
  2016年   15篇
  2015年   21篇
  2014年   48篇
  2013年   41篇
  2012年   36篇
  2011年   54篇
  2010年   36篇
  2009年   21篇
  2008年   20篇
  2007年   32篇
  2006年   37篇
  2005年   28篇
  2004年   27篇
  2003年   28篇
  2002年   10篇
  2001年   13篇
  2000年   14篇
  1999年   10篇
  1998年   16篇
  1997年   16篇
  1996年   12篇
  1995年   7篇
  1994年   17篇
  1993年   14篇
  1992年   17篇
  1991年   9篇
  1990年   7篇
  1989年   7篇
  1988年   11篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有757条查询结果,搜索用时 93 毫秒
31.

Pulsatile flow inside a moderately elastic circular conduit with a smooth expansion is studied as a model to understand the influence of wall elasticity in artery flow. The solution of the simultaneous fluid-wall evolution is evaluated by a perturbative method, where the zeroth order solution is represented by the flow in a rigid vessel; the first order correction gives the wall motion and induced flow modification without the need to solve the difficult coupled problem. Such an approach essentially assumes a locally infinite celerity, therefore it represent a good approximation for the fluid-wall interaction in sites of limited extent (branches, stenosis, aneurism, etc.), which include typical situations associated with vascular diseases. The problem is solved numerically in the axisymmetric approximation; the influence of wall elasticity on the flow and on the unsteady wall shear stress is studied in correspondence of parameters taken from realistic artery flow. Attention is posed to the role of phase difference between the incoming pressure and flow pulses.  相似文献   
32.
Summary

Tests on disbudding and their effects on the histogenesis of the wood ring. In this work the effects of hormonic character which appear during the histogenesis of the wood ring have been studied testing disbudding effects on the peach tree.

Some observations on the consequences due to defoliation are also included.

By removal of the buds, the annual ring shows a greater depth and a more marked uniformity of structure, due to an increased frequency of the vascular elements.

By removal of the leaves, the cambial activity is completely inhibited. These results are attributed to the fact that the leaves, according to the more recent hypotheses, produce the substance which stimulates the formation of the wood elements and the differentiation of the newly formed elements.

This inactive substance, produced by the leaf, would exert its action only when the buds, towards which it is directed, transform it into its active form. The removal of the buds would eliminate the centres of diffusion of the inactive substance and also its centres of activation and concentration for the coming rest period, in view of a new vegetative cycle.

As a conseguence the circulation of the inactive substance is more marked, as it is probably activated by the cambium, and its activity lasts longer, producing in the annual ring those characters peculiar to the spring wood, that is of a season in which the circulation of this substance is at its utmost.  相似文献   
33.
In spite of the general concept that herbal supplements are safe, there is a lack of appropriate quality control measures and regulations that often culminates in serious undesirable effects such as allergic reactions and renal and liver damage. Thus, there is a growing need to establish a suitable methodology that enables authentication and quality assurance of herbal products. The root of Panax ginseng C. A. Meyer (Araliaceae), commonly called ginseng, is traditionally recognized as a prominent herbal medicine in Far East Asia. There are two types of processed ginseng, white and red ginseng, based on processing methods, and these play a significant role in modifying ginsenosides, which are the major bioactive metabolites in these products. Herein we purify and characterize a new ginsenoside, 20(R)-ginsenoside Rf, utilizing NMR, UPLC-ESI-Q-TOF-MS and validate the metabolite is generated from its epimer, 20(S)-ginsenoside Rf during the steaming process to manufacture red ginseng. We further propose a relevant mechanism for the chemical conversion. This finding updates chemical profiling of ginseng products that can be employed in quality assurance and authentication.  相似文献   
34.
The rare ginsenosides are recognized as the functionalized molecules after the oral administration of Panax ginseng and its products. The sources of rare ginsenosides are extremely limited because of low ginsenoside contents in wild plants, hindering their application in functional foods and drugs. We developed an effective combinatorial biotechnology approach including tissue culture, immobilization, and hydrolyzation methods. Rh2 and nine other rare ginsenosides were produced by methyl jasmonate-induced culture of adventitious roots in a 10 L bioreactor associated with enzymatic hydrolysis using six β-glycosidases and their combination with yields ranging from 5.54 to 32.66 mg L−1. The yield of Rh2 was furthermore increased by 7% by using immobilized BglPm and Bgp1 in optimized pH and temperature conditions, with the highest yield reaching 51.17 mg L−1 (17.06% of protopanaxadiol-type ginsenosides mixture). Our combinatorial biotechnology method provides a highly efficient approach to acquiring diverse rare ginsenosides, replacing direct extraction from Panax plants, and can also be used to supplement yeast cell factories.  相似文献   
35.
NtdA from Bacillus subtilis is a sugar aminotransferase that catalyzes the pyridoxal phosphate-dependent equatorial transamination of 3-oxo-α-d-glucose 6-phosphate to form α-d-kanosamine 6-phosphate. The crystal structure of NtdA shows that NtdA shares the common aspartate aminotransferase fold (Type 1) with residues from both monomers forming the active site. The crystal structures of NtdA alone, co-crystallized with the product α-d-kanosamine 6-phosphate, and incubated with the amine donor glutamate reveal three key structures in the mechanistic pathway of NtdA. The structure of NtdA alone reveals the internal aldimine form of NtdA with the cofactor pyridoxal phosphate covalently attached to Lys-247. The addition of glutamate results in formation of pyridoxamine phosphate. Co-crystallization with kanosamine 6-phosphate results in the formation of the external aldimine. Only α-d-kanosamine 6-phosphate is observed in the active site of NtdA, not the β-anomer. A comparison of the structure and sequence of NtdA with other sugar aminotransferases enables us to propose that the VIβ family of aminotransferases should be divided into subfamilies based on the catalytic lysine motif.  相似文献   
36.
Recent computational fluid dynamics (CFD) studies relate abnormal blood flow to rupture of cerebral aneurysms. However, it is still debated how to model blood flow with sufficient accuracy. Common assumptions made include Newtonian behaviour of blood, traction free outlet boundary conditions and inlet boundary conditions based on available literature. These assumptions are often required since the available patient specific data is usually restricted to the geometry of the aneurysm and the surrounding vasculature. However, the consequences of these assumptions have so far been inadequately addressed.  相似文献   
37.
Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-l-alanine amidase, whereas Lc-Lys-2 is a γ-d-glutamyl-l-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with d-Ala4d-Asx-l-Lys3 in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting d-Ala4l-Ala-(l-Ala/l-Ser)-l-Lys3; moreover, they do not lyse the L. lactis mutant containing only the nonamidated d-Asp cross-bridge, i.e. d-Ala4d-Asp-l-Lys3. In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 l-Lys3-d-Asn-l-Lys3 bridges replacing the wild-type 4→3 d-Ala4-d-Asn-l-Lys3 bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly d-Asn but not PG with only the nonamidated d-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the d-Asn interpeptide bridge of PG.  相似文献   
38.
Plant biomass is central to the carbon cycle and to environmentally sustainable industries exemplified by the biofuel sector. Plant cell wall degrading enzymes generally contain noncatalytic carbohydrate binding modules (CBMs) that fulfil a targeting function, which enhances catalysis. CBMs that bind β-glucan chains often display broad specificity recognizing β1,4-glucans (cellulose), β1,3-β1,4-mixed linked glucans and xyloglucan, a β1,4-glucan decorated with α1,6-xylose residues, by targeting structures common to the three polysaccharides. Thus, CBMs that recognize xyloglucan target the β1,4-glucan backbone and only accommodate the xylose decorations. Here we show that two closely related CBMs, CBM65A and CBM65B, derived from EcCel5A, a Eubacterium cellulosolvens endoglucanase, bind to a range of β-glucans but, uniquely, display significant preference for xyloglucan. The structures of the two CBMs reveal a β-sandwich fold. The ligand binding site comprises the β-sheet that forms the concave surface of the proteins. Binding to the backbone chains of β-glucans is mediated primarily by five aromatic residues that also make hydrophobic interactions with the xylose side chains of xyloglucan, conferring the distinctive specificity of the CBMs for the decorated polysaccharide. Significantly, and in contrast to other CBMs that recognize β-glucans, CBM65A utilizes different polar residues to bind cellulose and mixed linked glucans. Thus, Gln106 is central to cellulose recognition, but is not required for binding to mixed linked glucans. This report reveals the mechanism by which β-glucan-specific CBMs can distinguish between linear and mixed linked glucans, and show how these CBMs can exploit an extensive hydrophobic platform to target the side chains of decorated β-glucans.  相似文献   
39.
Because tuberculosis is one of the most prevalent and serious infections, countermeasures against it are urgently required. We isolated the antitubercular agents caprazamycins from the culture of an actinomycete strain and created CPZEN-45 as the most promising derivative of the caprazamycins. Herein, we describe the mode of action of CPZEN-45 first against Bacillus subtilis. Unlike the caprazamycins, CPZEN-45 strongly inhibited incorporation of radiolabeled glycerol into growing cultures and showed antibacterial activity against caprazamycin-resistant strains, including a strain overexpressing translocase-I (MraY, involved in the biosynthesis of peptidoglycan), the target of the caprazamycins. By contrast, CPZEN-45 was not effective against a strain overexpressing undecaprenyl-phosphate–GlcNAc-1-phosphate transferase (TagO, involved in the biosynthesis of teichoic acid), and a mutation was found in the tagO gene of the spontaneous CPZEN-45-resistant strain. This suggested that the primary target of CPZEN-45 in B. subtilis is TagO, which is a different target from that of the parent caprazamycins. This suggestion was confirmed by evaluation of the activities of these enzymes. Finally, we showed that CPZEN-45 was effective against WecA (Rv1302, also called Rfe) of Mycobacterium tuberculosis, the ortholog of TagO and involved in the biosynthesis of the mycolylarabinogalactan of the cell wall of M. tuberculosis. The outlook for WecA as a promising target for the development of antituberculous drugs as a countermeasure of drug resistant tuberculosis is discussed.  相似文献   
40.
Although plants contain substantial amounts of arabinogalactan proteins (AGPs), the enzymes responsible for AGP glycosylation are largely unknown. Bioinformatics indicated that AGP galactosyltransferases (GALTs) are members of the carbohydrate-active enzyme glycosyltransferase (GT) 31 family (CAZy GT31) involved in N- and O-glycosylation. Six Arabidopsis GT31 members were expressed in Pichia pastoris and tested for enzyme activity. The At4g21060 gene (named AtGALT2) was found to encode activity for adding galactose (Gal) to hydroxyproline (Hyp) in AGP protein backbones. AtGALT2 specifically catalyzed incorporation of [14C]Gal from UDP-[14C]Gal to Hyp of model substrate acceptors having AGP peptide sequences, consisting of non-contiguous Hyp residues, such as (Ala-Hyp) repetitive units exemplified by chemically synthesized (AO)7 and anhydrous hydrogen fluoride-deglycosylated d(AO)51. Microsomal preparations from Pichia cells expressing AtGALT2 incorporated [14C]Gal to (AO)7, and the resulting product co-eluted with (AO)7 by reverse-phase HPLC. Acid hydrolysis of the [14C]Gal-(AO)7 product released 14C-radiolabel as Gal only. Base hydrolysis of the [14C]Gal-(AO)7 product released a 14C-radiolabeled fragment that co-eluted with a Hyp-Gal standard after high performance anion-exchange chromatography fractionation. AtGALT2 is specific for AGPs because substrates lacking AGP peptide sequences did not act as acceptors. Moreover, AtGALT2 uses only UDP-Gal as the substrate donor and requires Mg2+ or Mn2+ for high activity. Additional support that AtGALT2 encodes an AGP GALT was provided by two allelic AtGALT2 knock-out mutants, which demonstrated lower GALT activities and reductions in β-Yariv-precipitated AGPs compared with wild type plants. Confocal microscopic analysis of fluorescently tagged AtGALT2 in tobacco epidermal cells indicated that AtGALT2 is probably localized in the endomembrane system consistent with its function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号