首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   7篇
  国内免费   6篇
  2023年   5篇
  2022年   7篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   32篇
  2014年   8篇
  2013年   15篇
  2012年   15篇
  2011年   9篇
  2010年   6篇
  2009年   8篇
  2008年   12篇
  2007年   8篇
  2006年   9篇
  2005年   12篇
  2004年   6篇
  2003年   11篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1984年   1篇
  1973年   1篇
排序方式: 共有201条查询结果,搜索用时 500 毫秒
21.
Deficiency of circulating alpha-1-antitrypsin (AAT) is the most widely recognized abnormality of a proteinase inhibitor that causes lung disease. AAT-deficiency is caused by mutations of the AAT gene that lead to AAT protein retention in the endoplasmic reticulum (ER). Moreover, the mutant AAT accumulated in the ER predisposes the homozygote to severe liver injuries, such as neonatal hepatitis, juvenile cirrhosis, and hepatocellular carcinoma. Despite the fact that mutant AAT protein is subject to ER-associated degradation (ERAD), yeast genetic studies have determined that the ubiquitination machinery, Hrd1/Der3p-cue1p-Ubc7/6p, which plays a prominent role in ERAD, is not involved in degradation of mutant AAT. Here we report that gp78, a ubiquitin ligase (E3) pairing with mammalian Ubc7 for ERAD, ubiquitinates and facilitates degradation of ATZ, the classic deficiency variant of AAT having a Z mutation (Glu 342 Lys). Unexpectedly, gp78 over-expression also significantly increases ATZ solubility. p97/VCP, an AAA ATPase essential for retrotranslocation of misfolded proteins from the ER during ERAD, is involved in gp78-mediated degradation of ATZ. Surprisingly, unlike other ERAD substrates that cause ER stress leading to apoptosis when accumulated in the ER, ATZ, in fact, increases cell proliferation when over-expressed in cells. This effect can be partially inhibited by gp78 over-expression. These data indicate that gp78 assumes multiple unique quality control roles over ATZ, including the facilitation of degradation and inhibition of aggregation of ATZ.  相似文献   
22.
The p97/VCP ATPase complex facilitates the extraction and degradation of ubiquitinated proteins from larger structures. We therefore studied if p97 participates to the rapid degradation of myofibrillar proteins during muscle atrophy. Electroporation of a dominant negative p97 (DNp97), but not the WT, into mouse muscle reduced fibre atrophy caused by denervation and food deprivation. DNp97 (acting as a substrate-trap) became associated with specific myofibrillar proteins and its cofactors, Ufd1 and p47, and caused accumulation of ubiquitinated components of thin and thick filaments, which suggests a role for p97 in extracting ubiquitinated proteins from myofibrils. DNp97 expression in myotubes reduced overall proteolysis by proteasomes and lysosomes and blocked the accelerated proteolysis induced by FoxO3, which is essential for atrophy. Expression of p97, Ufd1 and p47 increases following denervation, at times when myofibrils are rapidly degraded. Surprisingly, p97 inhibition, though toxic to most cells, caused rapid growth of myotubes (without enhancing protein synthesis) and hypertrophy of adult muscles. Thus, p97 restrains post-natal muscle growth, and during atrophy, is essential for the accelerated degradation of most muscle proteins.  相似文献   
23.
The vitally important AAA (ATPases associated with various cellular activities) protein p97 is involved in cellular functions ranging from replication to degradation of misfolded proteins and has recently been proposed as a novel chemotherapeutic target. p97 is a large molecular machine that has been shown to hexamerize in vitro, with each monomer consisting of an N domain responsible for binding to effector proteins and two AAA repeats (D1 and D2). However, structural studies are inconclusive or in disagreement with one another on several important features such as the locations of the N domains, the relative orientations of the D1 and D2 rings, and the dimensions of the central pore. Here, we present atomic-scale simulations of the p97 hexamer in the prehydrolysis, transition, and post-hydrolysis states. To improve the agreement between low- and high-resolution experimental studies, we first use a biased simulation technique, molecular dynamics flexible fitting (MDFF), to improve the correlation between the structures described in these experiments. We follow this with extended, classical molecular dynamics simulations, which not only show that structures generated in the MDFF phase are stable, but reveal insights into the dynamics important to each state. Simulation results suggest a hybrid model for hydrolysis, in which the N and D2 domains are dynamic while the D1 domains are relatively static, salt bridges stabilize the position of the N domains in the pre-hydrolysis state, and the rings formed by D1 and D2 rotate relative to one another.  相似文献   
24.
Both Neurofibromatosis type I (NF1) and inclusion body myopathy with Paget''s disease of bone and frontotemporal dementia (IBMPFD) are autosomal dominant genetic disorders. These two diseases are fully penetrant but with high heterogeneity in phenotypes, suggesting the involvement of genetic modifiers in modulating patients'' phenotypes. Although NF1 is recognized as a developmental disorder and IBMPFD is associated with degeneration of multiple tissues, a recent study discovered the direct protein interaction between neurofibromin, the protein product of the NF1 gene, and VCP/p97, encoded by the causative gene of IBMPFD. Both NF1 and VCP/p97 are critical for dendritic spine formation, which provides the cellular mechanism explaining the cognitive deficits and dementia found in patients. Moreover, disruption of the interaction between neurofibromin and VCP impairs dendritic spinogenesis. Neurofibromin likely influences multiple downstream pathways to control dendritic spinogenesis. One is to activate the protein kinase A pathway to initiate dendritic spine formation; another is to regulate the synaptic distribution of VCP and control the activity of VCP in dendritic spinogenesis. Since neurofibromin and VCP/p97 also regulate cell growth and bone metabolism, the understanding of neurofibromin and VCP/p97 in neurons may be applied to study of cancer and bone. Statin treatment rescues the spine defects caused by VCP deficiency, suggesting the potential role of statin in clinical treatment for these two diseases.  相似文献   
25.
Ramanathan HN  Ye Y 《Cell research》2012,22(2):346-359
The AAA (ATPase-associated with various cellular activities) ATPase p97 acts on diverse substrate proteins to partake in various cellular processes such as membrane fusion and endoplasmic reticulum-associated degradation (ERAD). In membrane fusion, p97 is thought to function in analogy to the related ATPase NSF (N-ethylmaleimide-sensitive fusion protein), which promotes membrane fusion by disassembling a SNARE complex. In ERAD, p97 dislocates misfolded proteins from the ER membrane to facilitate their turnover by the proteasome. Here, we identify a novel function of p97 in endocytic trafficking by establishing the early endosomal autoantigen 1 (EEA1) as a new p97 substrate. We demonstrate that a fraction of p97 is localized to the early endosome membrane, where it binds EEA1 via the N-terminal C2H2 zinc finger domain. Inhibition of p97 either by siRNA or a pharmacological inhibitor results in clustering and enlargement of early endosomes, which is associated with an altered trafficking pattern for an endocytic cargo. Mechanistically, we show that p97 inhibition causes increased EEA1 self-association at the endosome membrane. We propose that p97 may regulate the size of early endosomes by governing the oligomeric state of EEA1.  相似文献   
26.
Caenorhabditis elegans possesses two p97/VCP/Cdc48p homologues, named CDC-48.1 (C06A1.1) and CDC-48.2 (C41C4.8), and their expression patterns and levels are differently regulated. To clarify the regulatory mechanisms of differential expression of two p97 proteins of C. elegans, we performed detailed deletion analysis of their promoter regions. We found that the promoter of cdc-48.1 contains two regions necessary for embryonic and for post-embryonic expression, while the promoter of cdc-48.2 contains the single region necessary for embryonic expression. In particular, two elements (Element A and Element B) and three conserved boxes (Box a, Box b and Box c) were essential for cdc-48.1 expression in embryos and at post-embryonic stages, respectively. By using South-Western blotting and MALDI-TOF MS analysis, we identified HMG-12 and CAR-1 as proteins that bind to Element A and Element B, respectively, from the embryonic nuclear extract. Importantly, we found the decreased expression of p97 in embryos prepared from hmg-12(RNAi) or car-1(RNAi) worms. These results indicate that both HMG-12 and CAR-1 play important roles in embryonic expression of cdc-48.1.  相似文献   
27.
Regulation of protein turnover by acetyltransferases and deacetylases   总被引:3,自引:0,他引:3  
  相似文献   
28.
Gaussia luciferase secreted by the copepod Gaussia princeps catalyzes the oxidation of coelenterazine to produce blue light. The primary structure of Gaussia luciferase deduced from the cDNA sequence shows two repeat sequences of 71 amino acid residues, suggesting the luciferase consists of two structural domains. Two domains in Gaussia luciferase were expressed independently in Escherichia coli cells, purified and characterized. We found that both domains have luminescence activity with coelenterazine, and the catalytic properties including luminescence spectrum, optimal pH, substrate specificity and luminescence stimulation by halogen ions (Cl, Br and I) are identical to intact Gaussia luciferase. Thus, Gaussia luciferase has two catalytic domains for the luminescence reaction.  相似文献   
29.
水稻雄性不育系珍汕97A抽穗期的基因型分析   总被引:3,自引:0,他引:3  
罗林广  翟虎渠  万建民 《遗传学报》2001,28(11):1019-1027
水稻雄性不育系珍汕97A是我国应用最大,使用最广泛的不育系,利用抽穗期基因型明确的秋光(e1e1e2e2e3e3se-1^eSe-1^e),越光(E1E1E2E2e3e3Se-1^eSe-1^e),日本晴(E1E1e2e2e3e3Se-1Se-1)和日光(E1E1E2E2e3e3Se-1Se-1)作测验品种,分析了水稻珍汕97B的抽穗期基因型,结果表明,珍汕97B的抽穗期感光基因型为:e1e1e2e2E3E3Se-1Se-1,同时还存在1对隐性感光抑制基因i-Se-1,进一步用QTL近等基因系NIL(Hd1),HIL(Hd2),NIL(Hd3),NIL(Hd5)和NIL(Hd6)进行的实验也验证了珍汕]97B 在1个显性的主效感光基因Se-1,以及其他感光修饰基因,如E3,Hd3(En-Se-1),Hd5和Hd6的基因的作用。因此,推测珍汕97A带有主效感光基因是其配制的灿型杂交稻抽穗期超亲表现的内因。  相似文献   
30.
Deaza analogues of nucleobases are potential drugs against infectious diseases caused by parasites. A caveat is that apart from binding their target parasite enzymes, they also bind and inhibit enzymes of the host. In order to design derivatives of deaza analogues which specifically bind target enzymes, knowledge of their molecular structure, protonation state, and predominant tautomers at physiological conditions is essential. We have employed resonance Raman spectroscopy at an excitation wavelength of 260 nm, to decipher solution structure of 9-deazaguanine (9DAG) and 9-deazahypoxanthine (9DAH). These are analogues of guanine and hypoxanthine, respectively, and have been exploited to study static complexes of nucleobase binding enzymes. Such enzymes are known to perturb pKa of their ligands, and thus, we also determined solution structures of these analogues at two, acidic and alkaline, pH. Structure of each possible protonation state and tautomer was computed using density functional theoretical calculations. Species at various pHs were identified based on isotopic shifts in experimental wavenumbers and by comparing these shifts with corresponding computed isotopic shifts. Our results show that at physiological pH, N1 of pyrimidine ring in 9DAG and 9DAH bears a proton. At lower pH, N3 is place of protonation, and at higher pH, deprotonation occurs at N1 position. The proton at N7 of purine ring remains intact even at pH 12.5. We have further compared these results with naturally occurring nucleotides. Our results identify key vibrational modes which can report on hydrogen bonding interactions, protonation and deprotonation in purine rings upon binding to the active site of enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号