首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   7篇
  2021年   1篇
  2019年   4篇
  2018年   2篇
  2015年   1篇
  2014年   8篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   9篇
  2009年   19篇
  2008年   16篇
  2007年   13篇
  2006年   18篇
  2005年   10篇
  2004年   2篇
  2002年   1篇
  1994年   1篇
  1983年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
31.
Parkinson's disease (PD) is a common neurodegenerative disease which usually associates with neuroinflammation. The main pathological characteristics of PD are dopaminergic neurons death and the presence of Lewy bodies which are composed of aggregated α-synuclein (α-Syn). Truncated forms of α-Syn are found in the brain of PD patients, and account for 10–30% of total synuclein in Lewy bodies. Caspase-1, which plays an important role in neuroinflammation, cleaves full-length α-Syn (α-Syn FL) to generate a C-terminus 19-residues truncated α-Syn (α-Syn121). However, the role of truncated α-Syn in the onset and/or pathogenesis of PD is unclear. Here, we used α-Syn121 as a model to explore its aggregation, membrane disruption and cytotoxicity properties. Compared with α-Syn FL, α-Syn121 aggregated at an accelerated rate, and formed amorphous aggregates rich in random coil structures rather than β-sheet-rich linear fibrils formed by α-Syn FL. Importantly, higher cytotoxicity with lower membrane disruption capacity was found for α-Syn121 aggregates. Furthermore, α-Syn121 aggregates could activate the apoptosis signaling pathway and stimulate the caspase-1-mediated cleavage of α-Syn FL to generate α-Syn121, which as a result leading to increased levels of endogenous α-Syn121 and intracellular S129 phosphorylated α-Syn inclusions. Together, our data suggests a hidden vicious cycle in PD that α-Syn121 rapidly forms amorphous aggregates, which activate caspase-1 to cleave α-Syn FL and generate more α-Syn121, and this cycle may contribute to the onset and/or pathogenesis of PD.  相似文献   
32.
In face of accumulated reports demonstrating that uptake of some cell-penetrating peptides occurs through previously described endocytic pathways, or is a consequence of cell fixation artifacts, we conducted a systematic analysis on the mechanism responsible for the cellular uptake of the S413-PV karyophilic cell-penetrating peptide. The results reviewed here show that the S413-PV peptide is able to very efficiently accumulate inside live cells in a rapid, non-toxic and dose-dependent manner, through a mechanism distinct from endocytosis. Comparative analysis of peptide uptake by mutant cells lacking heparan sulfate proteoglycans demonstrates that, although not mandatory, their presence at cell surface facilitates the cellular uptake of the S413-PV peptide. Furthermore, we demonstrate that upon interaction with lipid vesicles, the S413-PV peptide undergoes significant conformational changes that are consistent with the formation of helical structures. Such conformational changes occur concomitantly with a penetration of the peptide into the lipid bilayer, strongly suggesting that the resulting helical structures are crucial for the non-endocytic cellular uptake of the S413-PV peptide. Overall, our data support that, rather than endocytosis, the cellular uptake of the S413-PV cell-penetrating peptide is a consequence of its direct translocation through cell membranes following conformational changes induced by peptide-membrane interactions.  相似文献   
33.
We studied amidated and non-amidated piscidins 1 and 3, amphipathic cationic antimicrobial peptides from fish, to characterize functional and structural similarities and differences between these peptides and better understand the structural motifs involved in biological activity and functional diversity among amidated and non-amidated isoforms. Antimicrobial and hemolytic assays were carried out to assess their potency and toxicity, respectively. Site-specific high-resolution solid-state NMR orientational restraints were obtained from 15N-labeled amidated and non-amidated piscidins 1 and 3 in the presence of hydrated oriented lipid bilayers. Solid-state NMR and circular dichroism results indicate that the peptides are α-helical and oriented parallel to the membrane surface. This orientation was expected since peptide-lipid interactions are enhanced at the water-bilayer interface for amphipathic cationic antimicrobial peptides. 15N solid-state NMR performed on oriented samples demonstrate that piscidin experiences fast, large amplitude backbone motions around an axis parallel to the bilayer normal. Under the conditions tested here, piscidin 1 was confirmed to be more antimicrobially potent than piscidin 3 and antimicrobial activity was not affected by amidation. In light of functional and structural similarities between piscidins 1 and 3, we propose that their topology and fast dynamics are related to their mechanism of action.  相似文献   
34.
The skin secretions of amphibians are a rich source of antimicrobial peptides. The two antimicrobial peptides PGLa and magainin 2, isolated from the African frog Xenopus laevis, have been shown to act synergistically by permeabilizing the membranes of microorganisms. In this report, the literature on PGLa is extensively reviewed, with special focus on its synergistically enhanced activity in the presence of magainin 2. Our recent solid state 2H NMR studies of the orientation of PGLa in lipid membranes alone and in the presence of magainin 2 are described in detail, and some new data from 3,3,3-2H3-L-alanine labeled PGLa are included in the analysis.  相似文献   
35.
Bis(monoacylglycero)phosphate (BMP) is an unusually shaped lipid found in relatively high percentage in the late endosome. Here, we report the characterization of the morphology and molecular organization of dioleoyl-BMP (DOBMP) with dynamic light scattering, transmission electron microscopy, nuclear magnetic resonance (NMR) spectroscopy, and electron paramagnetic resonance spectroscopy. The morphology of hydrated DOBMP dispersions varies with pH and ionic strength, and DOBMP vesicles are significantly smaller in diameter than phosphatidylcholine dispersions. At neutral pH, DOBMP forms highly structured, clustered dispersions 500 nm in size. On the other hand, at acidic pH, spherically shaped vesicles are formed. NMR and spin-labeled electron paramagnetic resonance demonstrate that DOBMP forms a lamellar mesophase with acyl-chain packing similar to that of other unsaturated phospholipids. 31P NMR reveals an orientation of the phosphate group in DOBMP that differs significantly from that of other phospholipids. These macroscopic and microscopic structural characterizations suggest that the biosynthesis of BMP on the inner luminal membrane of maturing endosomes may possibly produce budded vesicles high in BMP content, which form small vesicular structures stabilized by the physical properties of the BMP lipid.  相似文献   
36.
We have tested whether arrestin binding requires the G-protein-coupled receptor be a dimer or a multimer. To do this, we encapsulated single-rhodopsin molecules into nanoscale phospholipid particles (so-called nanodiscs) and measured their ability to bind arrestin. Our data clearly show that both visual arrestin and β-arrestin 1 can bind to monomeric rhodopsin and stabilize the active metarhodopsin II form. Interestingly, we find that the monomeric rhodopsin in nanodiscs has a higher affinity for wild-type arrestin binding than does oligomeric rhodopsin in liposomes or nanodiscs, as assessed by stabilization of metarhodopsin II. Together, these results establish that rhodopsin self-association is not required to enable arrestin binding.  相似文献   
37.
Phospholipid-ethanol-aqueous mixtures containing bilayer-forming lipids and 20-50 wt.% of water form viscous gels. Further hydration of these gels results in the formation of liposomes whose morphology depends upon the lipid type. Upon hydration of gels containing mixtures of the lipids 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), small homogeneous and unilamellar liposomes were produced. In contrast, hydration of gels containing only POPC resulted in formation of large multilamellar liposomes. Likewise, mulitlamellar liposomes resulted when this method was applied to form highly fusogenic liposomes comprised of the novel negatively charged N-acyl-phosphatidylethanolamine (NAPE) mixed with di-oleoyl-phosphatidylcholine (DOPC) (7:3) [T. Shangguan, C.C. Pak, S. Ali, A.S. Janoff, P. Meers, Cation-dependent fusogenicity of an N-acyl phosphatidylethanolamine, Biochim. Biophys. Acta 1368 (1998) 171-183]. In all cases, the measured aqueous entrapment efficiencies were relatively high. To better understand how the molecular organization of these various gels affects liposome morphology, we examined samples by freeze-fracture transmission electron microscopy and X-ray diffraction. We found that phospholipid-ethanol-water gels are comprised of highly organized stacks of lamellae. A distinct feature of the gel samples that result in small unilamellar liposomes is the combination of acyl chain interdigitation and net electrostatic charge. We speculate that the mechanism of unilamellar liposome formation proceeds via formation of stalk contacts between neighboring layers similar to membrane hemifusion intermediates, and the high aqueous entrapment efficiencies make this liposome formation process attractive for use in drug delivery applications.  相似文献   
38.

Background

Microbial antibiotic resistance is a challenging medical problem nowadays. Two scorpion peptides displaying antibiotic activity: hadrurin and vejovine were taken as models for the design of novel shorter peptides with similar activity.

Methods

Using the standard Fmoc-based solid phase synthesis technique of Merrifield twelve peptides (18 to 29 amino acids long) were synthesized, purified and assayed against a variety of multi-drug resistant Gram-negative bacteria from clinical isolates. Hemolytic and antiparasitic activities of the peptides and their possible interactions with eukaryotic cells were verified. Release of the fluorophore calcein from liposomes treated with these peptides was measured.

Results

A peptide with sequence GILKTIKSIASKVANTVQKLKRKAKNAVA), and three analogs: Δ(Α29), Δ(K12-Q18; Ν26−Α29), and K4N Δ(K12-Q18; Ν26−Α29) were shown to inhibit the growth of Gram-negative (E. coli ATCC25922) and Gram-positive bacteria (S. aureus), as well as multi-drug resistant (MDR) clinical isolated. The antibacterial and antiparasitic activities were found with peptides at 0.78 to 25 μM and 5 to 25 μM concentration, respectively. These peptides have low cytotoxic and hemolytic activities at concentrations significantly exceeding their minimum inhibitory concentrations (MICs), showing values between 40 and 900 μM for their EC50, compared to the parent peptides vejovine and hadrurin that at the same concentration of their MICs lysed more than 50% of human erythrocytes cells.

Conclusions

These peptides promise to be good candidates to combat infections caused by Gram-negative bacteria from nosocomial infections.

General significance

Our results confirm that well designed synthetic peptides can be an alternative for solving the lack of effective antibiotics to control bacterial infections.  相似文献   
39.
Xie Y  Fleming E  Chen JL  Elmore DE 《Peptides》2011,32(4):677-682
Buforin II (BF2) is a histone-derived antimicrobial peptide that causes cell death by translocating across membranes and interacting with nucleic acids. It contains one proline residue critical for its function. Previous research found that mutations replacing proline lead to decreased membrane translocation and antimicrobial activity as well as increased membrane permeabilization. This study further investigates the role of proline in BF2's antimicrobial mechanism by considering the effect of changing proline position on membrane translocation, membrane permeabilization, and antimicrobial activity. For this purpose, four mutants were made with proline substitution (P11A) or relocation (P11A/G7P, P11A/V12P, P11A/V15P). These mutations altered the amount of helical content. Although antimicrobial activity correlated with the α-helical content for the peptides containing proline, membrane translocation did not. This observation suggests that factors in BF2's bactericidal mechanism other than translocation must be altered by these mutations. To better explain these trends we also measured the nucleic acid binding and membrane permeabilization of the mutant peptides. A comparison of mutant and wild type BF2 activity revealed that BF2 relies principally on membrane translocation and nucleic acid binding for antimicrobial activity, although membrane permeabilization may play a secondary role for some BF2 variants. A better understanding of the role of proline in the BF2 antimicrobial mechanism will contribute to the further design and development of BF2 analogs. Moreover, since proline residues are prevalent among other antimicrobial peptides, this systematic characterization of BF2 provides general insights that can promote our understanding of other systems.  相似文献   
40.
Biologically important peptides such as the Alzheimer peptide Abeta(1-40) display a reversible random coil <==>beta-structure transition at anionic membrane surfaces. In contrast to the well-studied random coil left arrow over right arrow alpha-helix transition of amphipathic peptides, there is a dearth on information on the thermodynamic and kinetic parameters of the random coil left arrow over right arrow beta-structure transition. Here, we present a new method to quantitatively analyze the thermodynamic parameters of the membrane-induced beta-structure formation. We have used the model peptide (KIGAKI)(3) and eight analogues in which two adjacent amino acids were substituted by their d-enantiomers. The positions of the d,d pairs were shifted systematically along the three identical segments of the peptide chain. The beta-structure content of the peptides was measured in solution and when bound to anionic lipid membranes with circular dichroism spectroscopy. The thermodynamic binding parameters were determined with isothermal titration calorimetry and the binding isotherms were analysed by combining a surface partition equilibrium with the Gouy-Chapman theory. The thermodynamic parameters were found to be linearly correlated with the extent of beta-structure formation. beta-Structure formation at the membrane surface is characterized by an enthalpy change of DeltaH(beta)=-0.23 kcal/mol per residue, an entropy change of DeltaS(beta)=-0.24 cal/mol K residue and a free energy change of DeltaG(beta)=-0.15 kcal/mol residue. An increase in temperature induces an unfolding of beta-structure. The residual free energy of membrane-induced beta-structure formation is close to that of membrane-induced alpha-helix formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号