首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   7篇
  2021年   1篇
  2019年   4篇
  2018年   2篇
  2015年   1篇
  2014年   8篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   9篇
  2009年   19篇
  2008年   16篇
  2007年   13篇
  2006年   18篇
  2005年   10篇
  2004年   2篇
  2002年   1篇
  1994年   1篇
  1983年   1篇
排序方式: 共有117条查询结果,搜索用时 265 毫秒
101.
Sphingomyelinase (SMase), a water-soluble enzyme from Bacillus cereus, is shown to bind with high affinity to vesicles of sphingomyelin (SM) but not to vesicles of phosphatidylcholine (PC). The reaction progress by SMase bound to SM vesicles occurs in the scooting mode with virtually infinite processivity of the successive interfacial turnover cycles. Three conditions for the microscopic steady state during the reaction progress at the interface are satisfied: the bound SMase does not leave the interface even after all the SM in the outer layer is converted to ceramide; the SMase-treated vesicles remain intact; and the ceramide product does not exchange with SM present in excess vesicles or in the inner layer of the hydrolyzed vesicle. Within these constraints, on accessibility and replenishment of the substrate, the extent of hydrolysis in the scooting mode reaction progress is a measure of the number of vesicles containing enzyme. The slope of the Poisson distribution plot, for the enzyme per vesicle versus the logarithm of the fraction of the total accessible substrate remaining unhydrolyzed in excess vesicles, shows that a single 32 kDa subunit of SMase is fully catalytically active. The maximum initial rate of hydrolysis, at the limit of the maximum possible substrate mol fraction, XS*=1, is 400 s?1 in H2O and 220 s?1 in D2O, which is consistent with the rate-limiting chemical step. The integrated reaction progress suggests that the ceramide product does not codisperse ideally on the hydrolyzed vesicles. Furthermore, complex reaction progress seen with covesicles of SM+PC are attributed to slow secondary changes in the partially hydrolyzed SM vesicles.  相似文献   
102.
The peptide-lipid interaction of a β-hairpin antimicrobial peptide tachyplesin-1 (TP-1) and its linear derivatives are investigated to gain insight into the mechanism of antimicrobial activity. 31P and 2H NMR spectra of uniaxially aligned lipid bilayers of varying compositions and peptide concentrations are measured to determine the peptide-induced orientational disorder and the selectivity of membrane disruption by tachyplesin. The disulfide-linked TP-1 does not cause any disorder to the neutral POPC and POPC/cholesterol membranes but induces both micellization and random orientation distribution to the anionic POPE/POPG membranes above a peptide concentration of 2%. In comparison, the anionic POPC/POPG bilayer is completely unaffected by TP-1 binding, suggesting that TP-1 induces negative curvature strain to the membrane as a mechanism of its action. Removal of the disulfide bonds by substitution of Cys residues with Tyr and Ala abolishes the micellization of POPE/POPG bilayers but retains the orientation randomization of both POPC/POPG and POPE/POPG bilayers. Thus, linear tachyplesin derivatives have membrane disruptive abilities but use different mechanisms from the wild-type peptide. The different lipid-peptide interactions between TP-1 and other β-hairpin antimicrobial peptides are discussed in terms of their molecular structure.  相似文献   
103.
Oritavancin, a lipoglycopeptide with marked bactericidal activity against vancomycin-resistant Staphylococcus aureus and enterococci, induces calcein release from CL:POPE and POPG:POPE liposomes, an effect enhanced by an increase in POPG:POPE ratio, and decreased when replacing POPG by DPPG (Domenech et al., Biochim Biophys Acta 2009; 1788:1832-40). Using vesicles prepared from lipids extracted from S. aureus, we showed that oritavancin induces holes, erosion of the edges, and decrease of the thickness of the supported lipid bilayers (atomic force microscopy; AFM). Oritavancin also induced an increase of membrane permeability (calcein release) on a time- and dose-dependent manner. These effects were probably related to the ability of the drug to bind to lipid bilayers as shown by 8-anilino-1- naphthalene sulfonic acid (ANS) assay. Interaction of oritavancin with phospholipids at the level of their glycerol backbone and hydrophobic domain was studied by monitoring changes of Laurdan excitation generalized polarization (GPex) and 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence anisotropy upon temperature increase. Oritavancin increased GPex values and the transition temperature, indicating a more ordered structure at the level of the glycerol backbone. Oritavancin slightly decreased DPH fluorescence depolarization intensities, suggesting an increase in fluidity at the level of acyl chains. Together, our data confirm the interaction of oritavancin with lipids and the potential role of a rigidifying effect at the level of glycerol backbone for membrane permeabilization. This work shows how AFM and biophysical methods may help in characterizing drug-membrane interactions, and sheds further light on the mode of action of oritavancin.  相似文献   
104.
Dynorphins, endogeneous opioid peptides, function as ligands to the opioid kappa receptors and induce non-opioid excitotoxic effects. Here we show that big dynorphin and dynorphin A, but not dynorphin B, cause leakage effects in large unilamellar phospholipid vesicles (LUVs). The effects parallel the previously studied potency of dynorphins to translocate through biological membranes. Calcein leakage caused by dynorphin A from LUVs with varying POPG/POPC molar ratios was promoted by higher phospholipid headgroup charges, suggesting that electrostatic interactions are important for the effects. A possibility that dynorphins generate non-opioid excitatory effects by inducing perturbations in the lipid bilayer of the plasma membrane is discussed.  相似文献   
105.
The membrane interaction and solution conformation of two mutants of the β-hairpin antimicrobial peptide, protegrin-1 (PG-1), are investigated to understand the structural determinants of antimicrobial potency. One mutant, [A6,8,13,15] PG-1, does not have the two disulfide bonds in wild-type PG-1, while the other, [Δ4,18 G10] PG-1, has only half the number of cationic residues. 31P solid-state NMR lineshapes of uniaxially aligned membranes indicate that the membrane disorder induced by the three peptides decreases in the order of PG-1>[Δ4,18 G10] PG-1?[A6,8,13,15] PG-1. Solution NMR studies of the two mutant peptides indicate that [Δ4,18 G10] PG-1 preserves the β-hairpin fold of the wild-type peptide while [A6,8,13,15] PG-1 adopts a random coil conformation. These NMR results correlate well with the known activities of these peptides. Thus, for this class of peptides, the presence of a β-hairpin fold is more essential than the number of cationic charges for antimicrobial activity. This study indicates that 31P NMR lineshapes of uniaxially aligned membranes are well correlated with antimicrobial activity, and can be used as a diagnostic tool to understand the peptide-lipid interactions of these antimicrobial peptides.  相似文献   
106.
Circular Dichroism (CD), isothermal calorimetry (ITC) and calcein fluorescence leakage experiments were conducted to provide insight into the mechanisms of binding of a series of antimicrobial peptides containing unnatural amino acids (Ac-XF-Tic-Oic-XK-Tic-Oic-XF-Tic-Oic-XK-Tic-KKKK-CONH2) to zwitterionic and anionic micelles, SUVs and LUVs; where X (Spacer# 1) is either Gly, β-Ala, Gaba or 6-aminohexanoic acid. It is the intent of this investigation to correlate these interactions with the observed potency and selectivity against several different strains of bacteria. The CD spectra of these compounds in the presence of zwitterionic DPC micelles and anionic SDS micelles are very different indicating that these compounds adopt different conformations on binding to the surface of anionic and zwitterionic membrane models. These compounds also exhibited very different CD spectra in the presence of zwitterionic POPC and anionic mixed 4:1 POPC/POPG SUVs and LUVs, indicating the formation of different conformations on interaction with the two membrane types. This observation is also supported by ITC and calcein leakage data. ITC data suggested these peptides interact primarily with the surface of zwitterionic LUVs and was further supported by fluorescence experiments where the interactions do not appear to be concentration dependent. In the presence of anionic membranes, the interactions appear more complex and the calorimetric and fluorescence data both imply pore formation is dependent on peptide concentration. Furthermore, evidence suggests that as the length of Spacer# 1 increases the mechanism of pore formation also changes. Based on the observed differences in the mechanisms of interactions with zwitterionic and anionic LUVs these AMPs are potential candidates for further drug development.  相似文献   
107.
We investigated the mode of action underlying the anti-mycoplasma activity of cationic antimicrobial peptides (AMPs) using four known AMPs and Mycoplasma pulmonis as a model mycoplasma. Scanning electron microscopy revealed that the integrity of the M. pulmonis membrane was significantly damaged within 30 min of AMPs exposure, which was confirmed by measuring the uptake of propidium iodine into the mycoplasma cells. The anti-mycoplasma activity of AMPs was found to depend on the binding affinity for phosphatidylcholine, which was incorporated into the mycoplasma membrane from the growth medium and preferentially distributed in the outer leaflet of the lipid bilayer.  相似文献   
108.
The membrane leakage caused by the cell penetrating peptide Tp10, a variant of transportan, was studied in large unilamellar vesicles with the entrapped fluorophore calcein. The vesicles were composed of zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. A significant decrease in membrane leakage was found when the 55kDa streptavidin protein was attached to Tp10. When a 5.4kDa peptide nucleic acid molecule was attached, the membrane leakage was comparable to that caused by Tp10 alone. The results suggest that direct membrane effects may cause membrane translocation of Tp10 alone and of smaller complexes, whereas these effects do not contribute for larger cargoes.  相似文献   
109.
The membrane-bound conformation of a cell-penetrating peptide, penetratin, is investigated using solid-state NMR spectroscopy. The 13C chemical shifts of 13C, 15N-labeled residues in the peptide indicate a reversible conformational change from β-sheet at low temperature to coil-like at high temperature. This conformational change occurs for all residues examined between positions 3 and 13, at peptide/lipid molar ratios of 1:15 and 1:30, in membranes with 25-50% anionic lipids, and in both saturated DMPC/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylchloline/1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) membranes and unsaturated POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol) membranes. Thus, it is an intrinsic property of penetratin. The coil state of the peptide has C-H order parameters of 0.23-0.52 for Cα and Cβ sites, indicating that the peptide backbone is unstructured. Moreover, chemical shift anisotropy lineshapes are uniaxially averaged, suggesting that the peptide backbone undergoes uniaxial rotation around the bilayer normal. These observations suggest that the dynamic state of penetratin at high temperature is a structured turn instead of an isotropic random coil. The thermodynamic parameters of this sheet-turn transition are extracted and compared to other membrane peptides reported to exhibit conformational changes. We suggest that the function of this turn conformation may be to reduce hydrophobic interactions with the lipid chains and facilitate penetratin translocation across the bilayer without causing permanent membrane damage.  相似文献   
110.
Pursuing the molecular mechanisms of the concentration dependent cytotoxic and hemolytic effects of the human antimicrobial peptide LL-37 on cells, we investigated the interactions of this peptide with lipids using different model membranes, together with fluorescence spectroscopy for the Trp-containing mutant LL-37(F27W). Minimum concentrations inhibiting bacterial growth and lipid interactions assessed by dynamic light scattering and monolayer penetration revealed the mutant to retain the characteristics of native LL-37. Although both LL-37 and the mutant intercalated effectively into zwitterionic phosphatidylcholine membranes the presence of acidic phospholipids caused augmented membrane binding. Interestingly, strongly attenuated intercalation of LL-37 into membranes containing both cholesterol and sphingomyelin (both at X = 0.3) was observed. Accordingly, the distinction between target and host cells by LL-37 is likely to derive from i) acidic phospholipids causing enhanced association with the former cells as well as ii) from attenuated interactions with the outer surface of the plasma membrane of the peptide secreting host, imposed by its high content of cholesterol and sphingomyelin. Our results further suggest that LL-37 may exert its antimicrobial effects by compromising the membrane barrier properties of the target microbes by a mechanism involving cytotoxic oligomers, similarly to other peptides forming amyloid-like fibers in the presence of acidic phospholipids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号