首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   2篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   7篇
  2014年   9篇
  2013年   7篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   5篇
  2008年   9篇
  2007年   5篇
  2006年   5篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1976年   1篇
排序方式: 共有117条查询结果,搜索用时 578 毫秒
81.
As a step toward understanding the homeostasis of peroxisomes in mammalian cells, we investigated a degradation system of peroxisomes in Chinese hamster ovary (CHO)-K1 cells in response to the nutrient-starvation. Peroxisomal proteins were degraded apparently in a preferential manner as compared to cytosolic proteins, when CHO-K1 cells were starved in Hank's solution and then re-cultured in a normal medium. We verified whether microtubule-associated protein I light chain 3 (LC3), an essential factor for autophagy, was involved in the degradation of peroxisomal proteins. In the LC3-knocked-down CHO-K1 cells, the specific degradation of peroxisomal proteins was no longer observed and proteins including peroxisomal and cytosolic proteins were rather non-selectively degraded under the starvation condition. The starvation-dependent non-selective protein degradation was inhibited with proteasome inhibitors, MG132 and Epoxomicin. The integral membrane peroxin, Pex14p interacted with membrane-bound LC3-II, the modified form of LC3, via microtubules under the starvation condition. Taken together, these results suggest that peroxisomal proteins are degraded by two degradation systems involving autophagy and proteasomes depending on various cell-culture conditions, and that Pex14p plays a pivotal role as a prerequisite factor for the degradation of peroxisomal proteins by autophagy with the aid of microtubules.  相似文献   
82.
Space-filling neurons extensively sample their receptive fields with fine dendritic branches. In this study we show that a member of the conserved Robo receptor family, Robo, and its ligand Slit regulate the dendritic differentiation of space-filling neurons. Loss of Robo or Slit function leads to faster elongating and less branched dendrites of the complex and space-filling class IV multi-dendritic dendrite-arborization (md-da) neurons in the Drosophila embryonic peripheral nervous system, but not of the simpler class I neurons. The total dendrite length of Class IV neurons is not modified in robo or slit mutant embryos. Robo mediates this process cell-autonomously. Upon Robo over-expression in md-da neurons the dendritic tree is simplified and time-lapse analysis during larval stages indicates that this is due to reduction in the number of newly formed branches. We propose that Slit, through Robo, provides an extrinsic signal to coordinate the growth rate and the branching level of space-filling neurons, thus allowing them to appropriately cover their target field.  相似文献   
83.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder mostly affecting the aging population over sixty. Cardinal symptoms including, tremors, muscle rigidity, drooping posture, drooling, walking difficulty, and autonomic symptoms appear when a significant number of nigrostriatal dopaminergic neurons are already destroyed. Hence we need early, sensitive, specific, and economical peripheral and/or central biomarker(s) for the differential diagnosis, prognosis, and treatment of PD. These can be classified as clinical, biochemical, genetic, proteomic, and neuroimaging biomarkers. Novel discoveries of genetic as well as nongenetic biomarkers may be utilized for the personalized treatment of PD during preclinical (premotor) and clinical (motor) stages. Premotor biomarkers including hyper-echogenicity of substantia nigra, olfactory and autonomic dysfunction, depression, hyposmia, deafness, REM sleep disorder, and impulsive behavior may be noticed during preclinical stage. Neuroimaging biomarkers (PET, SPECT, MRI), and neuropsychological deficits can facilitate differential diagnosis. Single-cell profiling of dopaminergic neurons has identified pyridoxal kinase and lysosomal ATPase as biomarker genes for PD prognosis. Promising biomarkers include: fluid biomarkers, neuromelanin antibodies, pathological forms of α-Syn, DJ-1, amyloid β and tau in the CSF, patterns of gene expression, metabolomics, urate, as well as protein profiling in the blood and CSF samples. Reduced brain regional N-acetyl-aspartate is a biomarker for the in vivo assessment of neuronal loss using magnetic resonance spectroscopy and T2 relaxation time with MRI. To confirm PD diagnosis, the PET biomarkers include [18F]-DOPA for estimating dopaminergic neurotransmission, [18F]dG for mitochondrial bioenergetics, [18F]BMS for mitochondrial complex-1, [11C](R)-PK11195 for microglial activation, SPECT imaging with 123Iflupane and βCIT for dopamine transporter, and urinary salsolinol and 8-hydroxy, 2-deoxyguanosine for neuronal loss. This brief review describes the merits and limitations of recently discovered biomarkers and proposes coenzyme Q10, mitochondrial ubiquinone-NADH oxidoreductase, melatonin, α-synculein index, Charnoly body, and metallothioneins as novel biomarkers to confirm PD diagnosis for early and effective treatment of PD.  相似文献   
84.
三七总皂苷是中药三七的主要有效成分,对中枢神经系统、心血管系统、血液系统等具有抗炎、抗纤维化、抗衰老、抗肿瘤等方面的生物学活性,是现代中药、药理等领域的研究热点.近年来随着研究的不断深入,三七总皂苷的生物学活性被进一步发现,其用途也越来越广.本文就三七总皂苷在生物学方面的研究情况和用途进行综述,并对其前景予以讨论.  相似文献   
85.
Directed neural differentiation of human embryonic stem cells (ESCs) enables researchers to generate diverse neuronal populations for human neural development study and cell replacement therapy. To realize this potential, it is critical to precisely understand the role of various endogenous and exogenous factors involved in neural differentiation. Cell density, one of the endogenous factors, is involved in the differentiation of human ESCs. Seeding cell density can result in variable terminal cell densities or localized cell densities (LCDs), giving rise to various outcomes of differentiation. Thus, understanding how LCD determines the differentiation potential of human ESCs is important. The aim of this study is to highlight the role of LCD in the differentiation of H9 human ESCs into neuroectoderm (NE), the primordium of the nervous system. We found the initially seeded cells form derived cells with variable LCDs and subsequently affect the NE differentiation. Using a newly established method for the quantitative examination of LCD, we demonstrated that in the presence of induction medium supplemented with or without SMAD signaling blockers, high LCD promotes the differentiation of NE. Moreover, SMAD signaling blockade promotes the differentiation of NE but not non-NE germ layers, which is dependent on high LCDs. Taken together, this study highlights the need to develop innovative strategies or techniques based on LCDs for generating neural progenies from human ESCs.  相似文献   
86.
LNX1 and LNX2 are E3 ubiquitin ligases that can interact with Numb — a key regulator of neurogenesis and neuronal differentiation. LNX1 can target Numb for proteasomal degradation, and Lnx mRNAs are prominently expressed in the nervous system, suggesting that LNX proteins play a role in neural development. This hypothesis remains unproven, however, largely because LNX proteins are present at very low levels in vivo. Here, we demonstrate expression of both LNX1 and LNX2 proteins in the brain for the first time. We clarify the cell-type specific expression of LNX isoforms in both the CNS and PNS, and identify a novel LNX1 isoform. Using luciferase reporter assays, we show that the 5′ untranslated region of the Lnx1_variant 2 mRNA, that generates the LNX1p70 isoform, strongly suppresses protein production. This effect is mediated in part by the presence of upstream open reading frames (uORFs), but also by a sequence element that decreases both mRNA levels and translational efficiency. By contrast, uORFs do not negatively regulate LNX1p80 or LNX2 expression. Instead, we find some evidence that protein turnover via proteasomal degradation may influence LNX1p80 levels in cells. These observations provide plausible explanations for the low levels of LNX1 proteins detected in vivo.  相似文献   
87.
88.
Cellular systems implanted into an injured nerve may produce growth factors or extracellular matrix molecules, modulate the inflammatory process and eventually improve nerve regeneration. In the present study, we evaluated the therapeutic value of human umbilical cord matrix MSCs (HMSCs) on rat sciatic nerve after axonotmesis injury associated to Vivosorb® membrane. During HMSCs expansion and differentiation in neuroglial-like cells, the culture medium was collected at 48, 72 and 96 h for nuclear magnetic resonance (NMR) analysis in order to evaluate the metabolic profile. To correlate the HMSCs ability to differentiate and survival capacity in the presence of the Vivosorb® membrane, the [Ca2+]i of undifferentiated HMSCs or neuroglial-differentiated HMSCs was determined by the epifluorescence technique using the Fura-2AM probe. The Vivosorb® membrane proved to be adequate and used as scaffold associated with undifferentiated HMSCs or neuroglial-differentiated HMSCs. In vivo testing was carried out in adult rats where a sciatic nerve axonotmesis injury was treated with undifferentiated HMSCs or neuroglial differentiated HMSCs with or without the Vivosorb® membrane. Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index (SFI), extensor postural thrust (EPT), and withdrawal reflex latency (WRL).  相似文献   
89.
Sulfoglucuronyl glycolipids (SGGLs) have been considered as target antigens in demyelinating peripheral neuropathies associated with IgM monoclonal gammopathy. The regulation of expression of SGGLs in the rat sciatic nerve during development was studied by assaying the levels of SGGLs and activities of four glycosyltransferases sequentially involved in their synthesis from lactosylceramide. The levels of SGGLs in the sciatic nerve increased with development and reached a maximum at sixty days after birth. The rate of increase in the level of SGGLs between day 5 to 20 was similar to rate of deposition of myelin in the nerve. Analysis of the activities of the glycosyltransferases showed that only lactotriosylceramide galactosyltransferase (LcOse3Cer-GalTr) increased in parallel with the levels of SGGLs during development. The other three enzymes were not co-relative with the synthesis of SGGLs. The product of LcOse3Cer-GalTr reaction, nLcOse4Cer is the key intermediate for all neolactoglycolipids, particularly NeuAc2-3nLcOse4Cer or nLM1, which is the major ganglioside (60%) of myelin in rat sciatic nerve. The results suggest that in the sciatic nerve SGGLs are mostly associated with Schwann cell myelin and their synthesis is regulated by LcOse3Cer-GalTr, unlike in the cerebral cortex and cerebellum where SGGLs are associated with the neuronal membranes and their synthesis is regulated by lactosylceramide N-acetylglucosaminyltransferase (LcOse2Cer-GlcNAcTr).  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号