首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63585篇
  免费   4436篇
  国内免费   3795篇
  2024年   57篇
  2023年   707篇
  2022年   904篇
  2021年   1524篇
  2020年   1393篇
  2019年   1853篇
  2018年   1870篇
  2017年   1335篇
  2016年   1523篇
  2015年   2142篇
  2014年   3209篇
  2013年   4383篇
  2012年   2420篇
  2011年   3339篇
  2010年   2655篇
  2009年   3298篇
  2008年   3564篇
  2007年   3671篇
  2006年   3297篇
  2005年   3259篇
  2004年   2881篇
  2003年   2576篇
  2002年   2364篇
  2001年   1565篇
  2000年   1329篇
  1999年   1435篇
  1998年   1421篇
  1997年   1206篇
  1996年   980篇
  1995年   1085篇
  1994年   1011篇
  1993年   906篇
  1992年   809篇
  1991年   604篇
  1990年   489篇
  1989年   445篇
  1988年   463篇
  1987年   411篇
  1986年   352篇
  1985年   435篇
  1984年   581篇
  1983年   409篇
  1982年   432篇
  1981年   287篇
  1980年   247篇
  1979年   213篇
  1978年   123篇
  1977年   101篇
  1976年   82篇
  1975年   66篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Pancreatic cancer is a lethal disease with limited treatment options for cure. A high degree of intrinsic and acquired therapeutic resistance may result from cellular alterations in genes and proteins involved in drug transportation and metabolism, or from the influences of cancer microenvironment. Mechanistic basis for therapeutic resistance remains unclear and should profoundly impact our ability to understand pancreatic cancer pathogenesis and its effective clinical management. Recent evidences have indicated the importance of epigenetic changes in pancreatic cancer, including posttranslational modifications of proteins. We will review new knowledge on protein arginine methylation and its consequential contribution to therapeutic resistance of pancreatic cancer, underlying molecular mechanism, and clinical application of potential strategies of its reversal.  相似文献   
92.
《Molecular cell》2020,77(6):1265-1278.e7
  1. Download : Download high-res image (317KB)
  2. Download : Download full-size image
  相似文献   
93.
94.
Typical somatic cell type histones are lost from the nucleus during late spermiogenesis in the house cricket; they are replaced by unusual basic proteins specific to the spermatid. We wish to characterize these proteins because they appear to determine the unusual chromatin structures of the spermatid. Molecular weights of the unusual basic proteins were estimated by chromatographing them on Bio-Gel A 0.5 M agarose columns eluted with 6 M guanidine hydrochloride. Two proteins named TH1 and TH2 have molecular weights in the range spanned by the somatic histones. The molecular weight of TH1 is 17 500 and that of TH2 is 15 500. Three additional spermatid proteins were also analyzed by molecular weight determination. They are called here protamines A, B and C, and they have molecular weights in the range typical of protamines. That of A is 6200, of B is 5500 and of C is 3800. They span the range from the large protamines typical of mammalian sperm to the small protamines of salmonid fish. The molecular weights of the TH proteins were also examined by electrophoresis on SDS-polyacrylamide gels. Amino acid compositions determined for TH1 and TH2 show that both are basic proteins rich in arginine relative to lysine. Their compositions are histone-like, but they appear to be distinct histone types rather than variant forms of the somatic histones.  相似文献   
95.
When expressed in Escherichia coli, a truncated form of phytochrome (oat PHYA AP3 residues 464-1129) self associates to form a series of products ranging in size from monomers to aggregates of greater than 20 subunits. When these same phytochrome sequences are coexpressed with the chaperonins GroEL and GroES, the truncated phytochrome migrates as a native-like dimer in size exclusion chromatography and no higher-order aggregates were detected. GroEL and GroES inhibition of phytochrome aggregation in E. coli presumably occurs via the suppression of folding pathways leading to incorrectly folded phytochrome.  相似文献   
96.
Apg2, one of the three cytosolic Hsp110 chaperones in humans, supports reactivation of unordered and ordered protein aggregates by Hsc70 (HspA8). Together with DnaJB1, Apg2 serves to nucleate Hsc70 molecules into sites where productive entropic pulling forces can be developed. During aggregate reactivation, Apg2 performs as a specialized nucleotide exchange factor, but the origin of its specialization is poorly defined. Here we report on the role of the distinctive C-terminal extension present in Apg2 and other metazoan homologs. We found that the first part of this Apg2 subdomain, with propensity to adopt α-helical structure, interacts with the nucleotide binding domain of Hsc70 in a nucleotide-dependent manner, contributing significantly to the stability of the Hsc70:Apg2 complex. Moreover, the second intrinsically disordered segment of Apg2 C-terminal extension plays an important role as a downregulator of nucleotide exchange. An NMR analysis showed that the interaction with Hsc70 nucleotide binding domain modifies the chemical environment of residues located in important functional sites such as the interface between lobe I and II and the nucleotide binding site. Our data indicate that Apg2 C-terminal extension is a fine-tuner of human Hsc70 activity that optimizes the substrate remodeling ability of the chaperone system.  相似文献   
97.
C3larvin toxin is a new member of the C3 class of the mono-ADP-ribosyltransferase toxin family. The C3 toxins are known to covalently modify small G-proteins, e.g. RhoA, impairing their function, and serving as virulence factors for an offending pathogen. A full-length X-ray structure of C3larvin (2.3 Å) revealed that the characteristic mixed α/β fold consists of a central β-core flanked by two helical regions. Topologically, the protein can be separated into N and C lobes, each formed by a β-sheet and an α-motif, and connected by exposed loops involved in the recognition, binding, and catalysis of the toxin/enzyme, i.e. the ADP-ribosylation turn–turn and phosphate–nicotinamide PN loops. Herein, we provide two new C3larvin X-ray structures and present a systematic study of the toxin dynamics by first analyzing the experimental variability of the X-ray data-set followed by contrasting those results with theoretical predictions based on Elastic Network Models (GNM and ANM). We identify residues that participate in the stability of the N-lobe, putative hinges at loop residues, and energy-favored deformation vectors compatible with conformational changes of the key loops and 3D-subdomains (N/C-lobes), among the X-ray structures. We analyze a larger ensemble of known C3bot1 conformations and conclude that the characteristic ‘crab-claw’ movement may be driven by the main intrinsic modes of motion. Finally, via computational simulations, we identify harmonic and anharmonic fluctuations that might define the C3larvin ‘native state.’ Implications for docking protocols are derived.  相似文献   
98.
 The role of the polypeptide matrix in electron transfer processes in proteins has been studied in two distinct systems: first in a protein where the induced ET is artificial, and second as part of the catalytic cycle of an enzyme. Azurins are structurally well-characterized blue single-copper proteins consisting of a rigid β-sheet polypeptide matrix. We have determined rate constants and activation parameters for intramolecular long-range electron transfer between the disulfide radical anions (generated by pulse radiolysis) and the copper(II) centre as a function of driving force and nature of the intervening medium in a large number of wild-type and single-site-mutated proteins. In ascorbate oxidase, for which the three-dimensional structure is equally well characterized, the internal ET from the type-I Cu(I) to the trinuclear Cu(II) centre has been studied. We find that the results correlate well with distance through well-defined pathways using a through-bond electron tunnelling mechanism. Received: 2 January 1997 / Accepted: 6 February 1997  相似文献   
99.
100.
《Molecular cell》2021,81(17):3650-3658.e5
  1. Download : Download high-res image (183KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号