首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7450篇
  免费   493篇
  国内免费   239篇
  2024年   11篇
  2023年   51篇
  2022年   64篇
  2021年   100篇
  2020年   157篇
  2019年   197篇
  2018年   211篇
  2017年   176篇
  2016年   186篇
  2015年   203篇
  2014年   296篇
  2013年   770篇
  2012年   270篇
  2011年   401篇
  2010年   333篇
  2009年   297篇
  2008年   289篇
  2007年   345篇
  2006年   313篇
  2005年   293篇
  2004年   230篇
  2003年   225篇
  2002年   213篇
  2001年   167篇
  2000年   142篇
  1999年   154篇
  1998年   195篇
  1997年   164篇
  1996年   128篇
  1995年   151篇
  1994年   146篇
  1993年   111篇
  1992年   128篇
  1991年   109篇
  1990年   103篇
  1989年   105篇
  1988年   96篇
  1987年   64篇
  1986年   35篇
  1985年   46篇
  1984年   128篇
  1983年   81篇
  1982年   67篇
  1981年   40篇
  1980年   52篇
  1979年   45篇
  1978年   19篇
  1977年   20篇
  1976年   26篇
  1975年   11篇
排序方式: 共有8182条查询结果,搜索用时 31 毫秒
31.
Summary The interaction of allosteric effectors (CO2, ATP, H+) with respect to the oxygen affinity of carp hemoglobin was analyzed by determining oxygen binding curves spectrophotometrically in dilute solutions of stripped hemoglobin at 20°C. The pH range studied was 6.8–8.2.P CO2 was 0, 10 and 70 mmHg (0, 1.33 and 9.3 kPa). ATP/Hb4 was 0, 8 and 24. In the presence of either CO2 or ATP, the effects of the cofactors onP 50 were as expected over the whole pH range. In contrast to other published data, each cofactor also had a significant effect onP 50 in the presence of the other cofactor. Evidence was obtained that oxylabile carbamate is formed by carp hemoglobin and that the formation of carbamate persists at a lower level in the presence of ATP. The results support the view that the binding of ATP to carp hemoglobin requires only one terminal amino group, leaving the other N-terminal of the -chain free to react with CO2.  相似文献   
32.
Alterations in cardiac membrane Ca2+ transport during oxidative stress   总被引:3,自引:0,他引:3  
Although cardiac dysfunction due to ischemia-reperfusion injury is considered to involve oxygen free radicals, the exact manner by which this oxidative stress affects the myocardium is not clear. As the occurrence of intracellular Ca2+ overload has been shown to play a critical role in the genesis of cellular damage due to ischemia-reperfusion, this study was undertaken to examine whether oxygen free radicals are involved in altering the sarcolemmal Ca2+-transport activities due to reperfusion injury. When isolated rat hearts were made globally ischemic for 30 min and then reperfused for 5 min, the Ca2+ -pump and Na+-Ca2+ exchange activities were depressed in the purified sarcolemmal fraction; these alterations were prevented when a free radical scavenger enzymes (superoxide dismutase plus catalase) were added to the reperfusion medium. Both the Ca2+- pump and Na+- Ca2+ exchange activities in control heart sarcolemmal preparations were depressed by activated oxygen-generating systems containing xanthine plus xanthine oxidase and H2O2; these changes were prevented by the inclusion of superoxide dismutase and catalase in the incubation medium. These results support the view that oxidative stress during ischemia-reperfusion may contribute towards the occurrence of intracellular Ca2+ overload and subsequent cell damage by depressing the sarcolemmal mechanisms governing the efflux of Ca2+ from the cardiac cell.  相似文献   
33.
The ethanol-oxidizing, proton-reducing Pelobacter acetylenicus was grown in chemostat cocultures with either Acetobacterium woodii, Methanobacterium bryantii, or Desulfovibrio desulfuricans. Stable steady state conditions with tightly coupled growth were reached at various dilution rates between 0.02 and 0.14 h-1. Both ethanol and H2 steady state concentrations increased with growth rate and were lower in cocultures with the sulfate reducer < methanogen < homoacetogen. Due to the higher affinity for H2, D. desulfuricans outcompeted M. bryantii, and this one A. woodii when inoculated in cocultures with P. acetylenicus. Cocultures with A. woodii had lower H2 steady state concentrations when bicarbonate reduction was replaced by the energetically more favourable caffeate reduction. Similarly, cocultures with D. desulfuricans had lower H2 concentrations with nitrate than with sulfate as electron acceptor. The Gibbs free energy (G) available to the H2-producing P. acetylenicus was independent of growth rate and the H2-utilizing partner, whereas the G available to the latter increased with growth rate and the energy yielding potential of the H2 oxidation reaction. The critical Gibbs free energy (Gc), i.e. the minimum energy required for H2 production and H2 oxidation, was-5.5 to-8.0 kJ mol-1 H2 for P. acetylenicus,-5.1 to-6.3 kJ mol-1 H2 for A. woodii,-7.5 to-9.1 kJ mol-1 H2 for M. bryantii, and-10.3 to-12.3 kJ mol-1 H2 for D. desulfuricans. Obviously, the potentially available energy was used more efficiently by homoacetogens > methanogens > sulfate reducers.  相似文献   
34.
Respiratory pathways in Agaricus bisporus and Scytalidium thermophilum   总被引:1,自引:0,他引:1  
Abstract The respiratory pathways of Agaricus bisporus and Scytalidium thermophilum were studied. A. bisporus appeared to possess both a cyanide-sensitive and a cyanide-insensitive respiration while in S. thermophilum the cyande-insensitive respiration was absent. Growth experiments showed the ecological advantage for A. bisporus under conditions where cytochrome mediated respiration is inhibited.  相似文献   
35.
Summary The effect of oxygen free radicals, generated by xanthine and xanthine oxidase, was studied on the release of lysosomal hydrolase from rat liver lysosomes in vitro. A lysosomal enriched subcellular fraction was prepared, using differential centrifugation technique, from the homogenate of rat liver. The biochemical purity of the lysosomal fraction was established by using the markers of different cellular organelles. Oxygen free radicals were generated in vitro by the addition of xanthine and xanthine oxidase. The release of lysosomal hydrolase (-glucuronidase) from the lysosomal fraction was measured. There was a 3 to 4 fold increase in the release of -glucuronidase activity in the presence of xanthine and xanthine oxidase when compared to that in the absence of xanthine and xanthine oxidase. In the presence of superoxide dismutase (SOD), a scavenger of oxygen free radicals, the xanthine and xanthine oxidase system was unable to induce the release of -glucuronidase activity from the lysosomes. Sonication (2 bursts for 15 sec each) and Lubrol (2 mg/10 mg lysosomal protein) treatment, which are known to cause membrane disruption, also induced the release of -glucuronidase from lysosomal fraction. This release of -glucuronidase by sonication and lubrol treatment was not prevented by SOD. These data indicate that lysosomal disruption is a consequence of oxygen free radicals, generated by xanthine and xanthine oxidase.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - EGTA Ethylene Glycol Bis-(-aminoethyl ether)N,N,-N,N-tetracetic acid - Tris Tris (hydroxymethyl) aminomethane - SOD Superoxide Dismutase  相似文献   
36.
Intracellular levels of F390 (AMP and GMP adducts of the 5-deazaflavin cofactor F420) in Methanobacterium thermoautotrophicum were analysed after gasing fermenter cultures with several consecutive cycles of substrate gas and gas mixtures containing 5% oxygen. No F390 was detected in growing cells, hydrogen starved cells and CO2 starved cells prior to O2 contamination. Also, no F390 was found in hydrogen depleted cells after O2 treatment. Exposure of exponentially growing cells and CO2 starved cells to oxygen lead to the formation of F390 species; the increase in the detected amount of F390 was coupled to a decrease of the F420 level. As soon as anaerobiosis was reestablished F390 cofactors were degraded and growth proceeded. Independent of the physiological condition of Methanobacterium thermoautotrophicum methanopterin was formed upon O2 exposure. After normal growth conditions were restored the level of detected methanopterin decreased again.  相似文献   
37.
Protein kinase C has recently attracted considerable attention because of its importance in the control of cell division, cell differentiation, and signal transduction across the cell membrane. The activity of this enzyme is altered by several lipids such as diacylglycerol, free fatty acids, lipoxins, gangliosides, and sulfatides. These lipids may interact with protein kinase C either directly or through calcium ions and produce their regulatory effect (activation or inhibition) on the activities of the enzymes phosphorylated by this kinase. These processes widen our perspective of the regulation of intercellular and intracelluular communication.Abbreviations used (PK-C) Protein kinase C - (cAMP-PK) cAMP dependent protein kinase - (DAG) diacylglycerol - (PtdSer) phosphatidylserine - (InsP 3) inositol 1,4,5-trisphosphate - (PtdIns 4,5-P2) inositol 4,5 bisphosphate - (FFA) free fatty acid - (MBP) myelin basic protein - (ATP) adenosine triphosphate - (GTP) guanine triphosphate - (TPA) 12-tetradecanoylphorbol-13-acetate - (EGF) epidermal growth factor - (PDGF) platelet derived growth factor - (NeuNAc) and N-acetylneuraminic acid  相似文献   
38.
Abstract Two denitrifying bacteria ( Pseudomonas chlororaphis and P. aureofaciens ) and a plant (barley, Hordeum vulgare ) were used to study the effect of O2 concentration on denitrification and NO3 uptake by roots under well-defined aeration conditions. Bacterial cells in the early stationary phase were kept in a chemostat vessel with vigorous stirring and thus a uniform O2 concentration in the solution. Both Pseudomonads lacked N2O reductase and so total denitrification could be directly measured as N2O production.
Denitrification decreased to 6–13% of the anaerobic rate at 0.01% O2 saturation (0.14 μM O2) and was totally inhibited at 0.04% O2 saturation (0.56 μM O2). In this well-mixed system denitrification was 10-times more oxygen sensitive than stated in earlier reports. Uptake of nitrate by plants was measured in the same system under light. The NO3 uptake rate decreased gradually from a maximum in 21% O2-saturated medium (air saturated) to zero at 1.6% O2 saturation (22.4 μM O2). Owing to the very different non-overlapping oxygen requirements of the two processes, direct competition for nitrate between plant roots and denitrifying bacteria cannot occur.  相似文献   
39.
Physiological studies on cAMP synthesis in Bacillus subtilis   总被引:1,自引:0,他引:1  
Abstract cAMP was detected in Bacillus subtilis SB 19 and in a temperature sensitive mutant ts 33-6 under oxygen limitation. Growth rate and cAMP content were negatively correlated. Dinitrophenol and α-methylglucoside elicited an increase of the synthesis of cAMP and an increase of the intracellular cAMP content. In response to a decrease was increased. This increase of cAMP concentration did not occur if nitrate was present in the growth medium as an alternative terminal electron acceptor.  相似文献   
40.
Abstract Actinomyces viscosus is a predominant microorganism in dental plaque. It is, just as the oral Streptococcus spp., a saccharolytic and aero-tolerant organism. We have investigated the effects of oxygen on the growth and metabolism of A. viscosus . To this end A. viscosus Ut 2 was grown in a glucose limited chemostat culture on a chemically defined medium ( D = 0.2 h−1) with exposure to variable amounts of oxygen. The Yglucose increased from 62.5 g · mol−1 under anaerobic conditions to 149 g · mol−1 under aerobic conditions, while, concomitantly, the carbon recovery from acidic fermentation products decreased from 75% to 7%. Addition of [14C]glucose to the chemostat showed that the glucose, which was not converted to acidic fermentation products, was instead converted to carbon dioxide or used for the production of biomass. Under aerobic and anaerobic conditions identical cytochrome spectra, containing only two cytochrome b -type absorption bands, were found. It was concluded that electron transport phosphorylation probably occurs both under aerobic and anaerobic conditions. Anaerobically, fumarate served as the electron acceptor, while the high growth yields observed under aerobic conditions are likely to be explained by citric acid cycle activity coupled to electron transport phosphorylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号