首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   18篇
  国内免费   1篇
  2024年   1篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   7篇
  2018年   7篇
  2017年   3篇
  2016年   8篇
  2015年   7篇
  2014年   3篇
  2013年   7篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2007年   7篇
  2006年   4篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1994年   2篇
  1993年   1篇
  1986年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
排序方式: 共有94条查询结果,搜索用时 93 毫秒
91.
ObjectivesAu nanoclusters (AuNCs) have been used widely in fluorescence bio‐imaging because of their good fluorescence, small particle size and non‐cytotoxicity. AuNCs are also efficient in computed tomography (CT) imaging. Hence, a dual‐modal imaging probe can be constructed without any complicated modification processes by exploiting the excellent performance of AuNCs. In the present study, AuNCs were enriched with mesoporous silica nanoparticles (MSNs) to obtain enhanced fluorescence/CT dual‐modal imaging, which was capable of acquiring more imaging information for diseases compared with single‐mode imaging.Materials and methodsBiocompatible bovine serum albumin (BSA)‐capped AuNCs were prepared and loaded into amine‐functionalized MSNs to form MSN@AuNCs. BSA‐AuNCs, MSNs, and MSN@AuNCs were characterized by ultraviolet‐visible (UV‐vis) spectra, transmission electron microscopy (TEM), fluorescence spectra, and zeta potential. CT imaging was recorded using micro‐CT scanning. Fluorescence imaging was measured using confocal laser scanning microscopy and flow cytometry.ResultsThe prepared AuNCs and MSNs possessed good properties as previously reported. The fluorescence intensity and CT value of the AuNCs were enhanced after being enriched with MSNs. The nanoparticles were both non‐cytotoxic. Confocal laser scanning microscopy and flow cytometry indicated that MSN@AuNCs in CAL‐27 cells showed improved fluorescence imaging compared with simple AuNCs at the same concentration.ConclusionsThe results revealed that the strategy of enriching AuNCs with MSNs can obtain highly sensitive fluorescence/CT dual‐modal imaging, which indicated the potential of this nanoparticle in the diagnosis and treatment of disease.  相似文献   
92.
93.
An original synthesis method based on X-ray irradiation produced gold nanoparticles (AuNPs) with two important properties for biomedical research: intense visible photoluminescence and very high accumulation in cancer cells. The nanoparticles, coated with MUA (11-mercaptoundecanoid acid), are very small (1.4 nm diameter); the above two properties are not present for even slightly larger sizes. The small MUA-AuNPs are non-cytotoxic (except for very high concentrations) and do not interfere with cancer cell proliferation. Multimodality imaging using visible light fluorescence and X-ray microscopy is demonstrated by tracing the nanoparticle-loaded tumor cells.  相似文献   
94.
In the current scenario of the fight against cancer Integration of potential elements seems to be the best alternative since it overcomes the weaknesses of individuals and the combination of elements makes them formidable in the fight against the cancer war. Inspired by this objective and trusting our knowledge of paddy straw grown oyster mushroom, Pleurotus florida (Pf) mediated synthesis; a first-of-kind approach has been developed for the rapid synthesis of Au–Pt–Ag trimetallic nanoparticles (TMNPs). The developed method was successful, which was confirmed by Ultraviolet–Visible, X-ray diffraction, Transmission Electron Microscopy, Energy Dispersive Spectroscopy. Specifically, prepared TMNPs have been studied for their stability and size as a primary prerequisite for nanomedicine. Finally, the stable nanomedicine developed has been assessed for its performance against the highly metastatic breast cancer cell line (mda-mb-231). The performance was assessed using MTT assay and morphological readings, which were integrated with the cell viability data. We also determined the IC50 value, which was far superior to individual components and motivated us to postulate the possible breast cancer cell killing mechanism of TMNPs. The present study unlocks the new paths for the mushroom-mediated environmentally friendly, economic synthesis of trimetallic nanoparticles, which can be effectively used in cancer nanomedicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号