首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   5篇
  国内免费   1篇
  2023年   5篇
  2022年   3篇
  2021年   6篇
  2020年   8篇
  2019年   14篇
  2018年   19篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   27篇
  2013年   25篇
  2012年   12篇
  2011年   11篇
  2010年   6篇
  2009年   6篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
41.
In this study, we investigated the pathogenicity of a homozygous Asp446Asn mutation in the NDUFS2 gene of a patient with a mitochondrial respiratory chain complex I deficiency. The clinical, biochemical, and genetic features of the NDUFS2 patient were compared with those of 4 patients with previously identified NDUFS2 mutations. All 5 patients presented with Leigh syndrome. In addition, 3 out of 5 showed hypertrophic cardiomyopathy. Complex I amounts in the patient carrying the Asp446Asn mutation were normal, while the complex I activity was strongly reduced, showing that the NDUFS2 mutation affects complex I enzymatic function. By contrast, the 4 other NDUFS2 patients showed both a reduced amount and activity of complex I. The enzymatic defect in fibroblasts of the patient carrying the Asp446Asn mutation was rescued by transduction of wild type NDUFS2. A 3-D model of the catalytic core of complex I showed that the mutated amino acid residue resides near the coenzyme Q binding pocket. However, the KM of complex I for coenzyme Q analogs of the Asp446Asn mutated complex I was similar to the KM observed in other complex I defects and in controls. We propose that the mutation interferes with the reduction of coenzyme Q or with the coupling of coenzyme Q reduction with the conformational changes involved in proton pumping of complex I.  相似文献   
42.
Monoclonal antibodies (mAbs) are important tools in the diagnosis and characterization of mitochondrial diseases. They can be used in immunohistochemical and/or Western blotting approaches to identify misassembled OXPHOS complexes or pyruvate dehydrogenase deficiencies where the intact complex is not formed which is the great majority of cases. The advantage of antibody based approaches is that they can be quantitative, require very small amounts of tissue sample and are fast, simple and relatively cheap to perform. Here we provide details of the mAbs currently available and describe optimized protocols for both immunohistochemistry using patient fibroblasts as well as Western blotting using either cell culture or biopsy material.  相似文献   
43.
Here, we set out to test the novel hypothesis that increased mitochondrial biogenesis in epithelial cancer cells would “fuel” enhanced tumor growth. For this purpose, we generated MDA-MB-231 cells (a triple-negative human breast cancer cell line) overexpressing PGC-1α and MitoNEET, which are established molecules that drive mitochondrial biogenesis and increased mitochondrial oxidative phosphorylation (OXPHOS). Interestingly, both PGC-1α and MitoNEET increased the abundance of OXPHOS protein complexes, conferred autophagy resistance under conditions of starvation and increased tumor growth by up to ~3-fold. However, this increase in tumor growth was independent of neo-angiogenesis, as assessed by immunostaining and quantitation of vessel density using CD31 antibodies. Quantitatively similar increases in tumor growth were also observed by overexpression of PGC-1β and POLRMT in MDA-MB-231 cells, which are also responsible for mediating increased mitochondrial biogenesis. Thus, we propose that increased mitochondrial “power” in epithelial cancer cells oncogenically promotes tumor growth by conferring autophagy resistance. As such, PGC-1α, PGC-1β, mitoNEET and POLRMT should all be considered as tumor promoters or “metabolic oncogenes.” Our results are consistent with numerous previous clinical studies showing that metformin (a weak mitochondrial “poison”) prevents the onset of nearly all types of human cancers in diabetic patients. Therefore, metformin (a complex I inhibitor) and other mitochondrial inhibitors should be developed as novel anticancer therapies, targeting mitochondrial metabolism in cancer cells.  相似文献   
44.
We have recently proposed a new two-compartment model for understanding the Warburg effect in tumor metabolism. In this model, glycolytic stromal cells produce mitochondrial fuels (L-lactate and ketone bodies) that are then transferred to oxidative epithelial cancer cells, driving OXPHOS and mitochondrial metabolism. Thus, stromal catabolism fuels anabolic tumor growth via energy transfer. We have termed this new cancer paradigm the “reverse Warburg effect,” because stromal cells undergo aerobic glycolysis, rather than tumor cells. To assess whether this mechanism also applies during cancer cell metastasis, we analyzed the bioenergetic status of breast cancer lymph node metastases, by employing a series of metabolic protein markers. For this purpose, we used MCT4 to identify glycolytic cells. Similarly, we used TO MM20 and COX staining as markers of mitochondrial mass and OXPHOS activity, respectively. Consistent with the “reverse Warburg effect,” our results indicate that metastatic breast cancer cells amplify oxidative mitochondrial metabolism (OXPHOS) and that adjacent stromal cells are glycolytic and lack detectable mitochondria. Glycolytic stromal cells included cancer-associated fibroblasts, adipocytes and inflammatory cells. Double labeling experiments with glycolytic (MCT4) and oxidative (TO MM20 or COX) markers directly shows that at least two different metabolic compartments co-exist, side-by-side, within primary tumors and their metastases. Since cancer-associated immune cells appeared glycolytic, this observation may also explain how inflammation literally “fuels” tumor progression and metastatic dissemination, by “feeding” mitochondrial metabolism in cancer cells. Finally, MCT4(+) and TO MM20(-) “glycolytic” cancer cells were rarely observed, indicating that the conventional “Warburg effect” does not frequently occur in cancer-positive lymph node metastases.  相似文献   
45.
46.
Gene flow is traditionally thought to be antagonistic to population differentiation and local adaptation. However, recent studies have demonstrated that local adaptation can proceed provided that selection is greater than the homogenizing effects of gene flow. We extend these initial studies by combining ecology (climate), phenotype (body size), physiological genetics (oxidative phosphorylation genes), and neutral loci (nuclear microsatellites and introns) to test whether selection can counter-balance gene flow and hence promote local adaptation in a bird whose distribution spans an aridity gradient. Our results show that the Karoo scrub-robin's climatic niche is spatially structured, providing the potential for local adaptation to develop. We found remarkably discordant patterns of divergence among mtDNA, morphology, and neutral loci. For the mitochondrial genes, two amino acid replacements, strong population structure and reduced gene flow were associated with the environmental gradient separating western coastal sites from the interior of southern Africa. In contrast, morphology and the neutral loci exhibited variation independent of environmental variables, and revealed extensive levels of gene flow across the aridity gradient, 50 times larger than the estimates for mitochondrial genes. Together, our results suggest that selective pressures on physiology, mediated by the mitochondrial genome, may well be a common mechanism for facilitating local adaptation to new climatic conditions.  相似文献   
47.
Oxidative stress contributes to dysfunction of glial cells in the optic nerve head (ONH). However, the biological basis of the precise functional role of mitochondria in this dysfunction is not fully understood. Coenzyme Q10 (CoQ10), an essential cofactor of the electron transport chain and a potent antioxidant, acts by scavenging reactive oxygen species (ROS) for protecting neuronal cells against oxidative stress in many neurodegenerative diseases. Here, we tested whether hydrogen peroxide (100 μM H2O2)-induced oxidative stress alters the mitochondrial network, oxidative phosphorylation (OXPHOS) complex (Cx) expression and bioenergetics, as well as whether CoQ10 can ameliorate oxidative stress-mediated alterations in mitochondria of the ONH astrocytes in vitro. Oxidative stress triggered the activation of ONH astrocytes and the upregulation of superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) protein expression in the ONH astrocytes. In contrast, CoQ10 not only prevented activation of ONH astrocytes but also significantly decreased SOD2 and HO-1 protein expression in the ONH astrocytes against oxidative stress. Further, CoQ10 prevented a significant loss of mitochondrial mass by increasing mitochondrial number and volume density and by preserving mitochondrial cristae structure, as well as promoted mitofilin and peroxisome-proliferator-activated receptor-γ coactivator-1 protein expression in the ONH astrocyte, suggesting an induction of mitochondrial biogenesis. Finally, oxidative stress triggered the upregulation of OXPHOS Cx protein expression, as well as reduction of cellular adeonsine triphosphate (ATP) production and increase of ROS generation in the ONH astocytes. However, CoQ10 preserved OXPHOS protein expression and cellular ATP production, as well as decreased ROS generation in the ONH astrocytes. On the basis of these observations, we suggest that oxidative stress-mediated mitochondrial dysfunction or alteration may be an important pathophysiological mechanism in the dysfunction of ONH astrocytes. CoQ10 may provide new therapeutic potentials and strategies for protecting ONH astrocytes against oxidative stress-mediated mitochondrial dysfunction or alteration in glaucoma and other optic neuropathies.  相似文献   
48.
A series of DLC (delocalized lipophilic cation) modified spinosyn derivatives were synthesized and evaluated for antitumor efficacies both in vitro and in vivo. Cancer cell based antiproliferative assays indicated that the more lipophilic derivatives had stronger inhibitory effects on the tested cancer cell lines. Compound 7b and 8b exhibited strong anti-OXPHOS and apoptosis inducing ability. Notable antitumor efficacies of 7b (5 mg/kg) and 8b (2.5 mg/kg) were observed in the in vivo tumor xenograft experiments, however, lethal toxicities were observed on higher dosages. Our findings indicated that DLC modification is a viable strategy to enhance the anti-OXPHOS and antitumor efficacies of spinosyn derivatives.  相似文献   
49.
Mutations in the parkin gene are expected to play an essential role in autosomal recessive Parkinson's disease. Recent studies have established an impact of parkin mutations on mitochondrial function and autophagy. In primary skin fibroblasts from two patients affected by an early onset Parkinson's disease, we identified a hitherto unreported compound heterozygous mutation del exon2-3/del exon3 in the parkin gene, leading to the complete loss of the full-length protein. In both patients, but not in their heterozygous parental control, we observed severe ultrastructural abnormalities, mainly in mitochondria. This was associated with impaired energy metabolism, deregulated reactive oxygen species (ROS) production, resulting in lipid oxidation, and peroxisomal alteration. In view of the involvement of parkin in the mitochondrial quality control system, we have investigated upstream events in the organelles' biogenesis. The expression of the peroxisome proliferator-activated receptor gamma-coactivator 1-alpha (PGC-1α), a strong stimulator of mitochondrial biogenesis, was remarkably upregulated in both patients. However, the function of PGC-1α was blocked, as revealed by the lack of its downstream target gene induction. In conclusion, our data confirm the role of parkin in mitochondrial homeostasis and suggest a potential involvement of the PGC-1α pathway in the pathogenesis of Parkinson's disease. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.  相似文献   
50.
In the past years, free fatty acids (FFAs) and obesity have been reported to play an important role in cancer development. Palmitic acid (PA) is the most prevalent saturated FFA in circulation. However, the mechanism underlying the effect of PA on cell proliferation is still to be elucidated. In this report, we, for the first time, investigate the signaling pathway in human normal hepatocytes (QZG) responsible for PA-induced proliferation. The results demonstrate that PA promotes cell cycle progression, accelerates cell proliferation, and induces a transient and sequential activation of a series of kinases. The employment of several inhibitors and antioxidants indicates that a ROS-induced stress-sensitive p38 MAPK/ERK-Akt cascade plays a critical role in the regulation of PA on cell cycle and cell proliferation. Moreover, PA dose and time dependently activates Nrf2 and this activation relies on ROS-induced stimulation of p38 MAPK/ERK-Akt signaling, demonstrating that Nrf2 activation may be associated with the regulation of PA on cell cycle transition and proliferation. In conclusion, our study elucidates the importance of PA metabolism on cell proliferation, and suggests that PA stimulates hepatocyte proliferation through activating the ROS-p38 MAPK/ERK-Akt cascade which is intersected with the activation of Nrf2 and that the effect of ROS on signal transduction is in a dose- and time-dependent manner. All the above noted provide a new clue for the central role of ROS in cell proliferation and tumorigenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号