首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   16篇
  国内免费   1篇
  2023年   1篇
  2022年   3篇
  2021年   9篇
  2020年   9篇
  2019年   14篇
  2018年   11篇
  2017年   3篇
  2016年   9篇
  2015年   8篇
  2014年   15篇
  2013年   15篇
  2012年   15篇
  2011年   11篇
  2010年   6篇
  2009年   7篇
  2008年   2篇
  2007年   7篇
  2006年   5篇
  2004年   1篇
  2003年   2篇
  1994年   2篇
  1993年   1篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
排序方式: 共有159条查询结果,搜索用时 250 毫秒
31.
Monoamine oxidase (MAO), a mitochondrial enzyme that oxidizes biogenic amines generating hydrogen peroxide, is a major source of oxidative stress in cardiac injury. However, the molecular mechanisms underlying its overactivation in pathological conditions are still poorly characterized.Here, we investigated whether the enhanced MAO-dependent hydrogen peroxide production can be due to increased substrate availability using a metabolomic profiling method. We identified N1-methylhistamine -the main catabolite of histamine- as an important substrate fueling MAO in Langendorff mouse hearts, directly perfused with a buffer containing hydrogen peroxide or subjected to ischemia/reperfusion protocol. Indeed, when these hearts were pretreated with the MAO inhibitor pargyline we observed N1-methylhistamine accumulation along with reduced oxidative stress. Next, we showed that synaptic terminals are the major source of N1-methylhistamine. Indeed, in vivo sympathectomy caused a decrease of N1-methylhistamine levels, which was associated with a marked protection in post-ischemic reperfused hearts. As far as the mechanism is concerned, we demonstrate that exogenous histamine is transported into isolated cardiomyocytes and triggers a rise in the levels of reactive oxygen species (ROS). Once again, pargyline pretreatment induced intracellular accumulation of N1-methylhistamine along with decrease in ROS levels. These findings uncover a receptor-independent mechanism for histamine in cardiomyocytes.In summary, our study reveals a novel and important pathophysiological causative link between MAO activation and histamine availability during pathophysiological conditions such as oxidative stress/cardiac injury.  相似文献   
32.
Barrett's esophagus (BE) is essentially a metaplasia in which the normal stratified squamous epithelium is replaced by columnar epithelium. This study focuses on the involvement of OCT4 and SOX2, 2 key cell-reprogramming factors, in the deoxycholic acid (DCA)-induced expression of the intestinal hallmarks Cdx2 and MUC2 using both in vivo and in vitro models. Up-regulated expression of OCT4 and down-regulated expression of SOX2 were observed in BE compared with normal esophagus and esophagitis. Consistent with the data in vivo, DCA induced time-dependent expression of OCT4 at both the mRNA and protein levels and decreased nuclear expression of SOX2 in Het-1A cells. Down-regulation of OCT4 expression by siRNA abrogated DCA-induced expression of Cdx2 and MUC2, whereas siRNA against SOX2 significantly upregulated the expression of both Cdx2 and MUC2. Our data indicate that both OCT4 and SOX2 play important roles in the development of BE triggered by bile acid reflux.  相似文献   
33.
The aim of this study was to investigate the effect of testosterone and oestrogen on regulating organic cation transporters (Octs) and multidrug and toxin extrusions (Mates) expression in the kidney of mice and urinary excretion of metformin. 8 week‐old male db/db mice were treated with estradiol (5 mg/kg), testosterone (50 mg/kg) or olive oil with same volume. Metformin (150 mg/kg) was injected in daily for successive 7 days. Plasma, urine and tissue concentrations of metformin were determined by liquid chromatography‐tandem mass spectrometry (LCMS) assay. Western blotting and Real‐time PCR analysis were successively used to evaluate the renal protein and mRNA expression of Octs and MATEs. After treatment, the protein expression of Mate1 and Oct2 in testosterone group was significantly increased than those in control group (both P < 0.05). The protein expression of Mate1 and Oct2 in estradiol group was significantly reduced by 29.4% and 43.3%, respectively, compared to those in control group (all P < 0.05). These data showed a good agreement with the change in mRNA level (all P < 0.05). The plasma metformin concentration (ng/ml) in mice treated with estradiol was significantly higher than control and testosterone group (677.56 ± 72.49 versus 293.92 ± 83.27 and 261.46 ± 79.45; P < 0.01). Moreover, testosterone increased the metformin urine excretion of mice while estradiol decreasing (both P < 0.01). Spearman correlation analysis showed that gonadal hormone was closely associated with Mate1 and Oct2 expression and metformin urine excretion in db/db mice (all P < 0.05). Testosterone and oestrogen exerted reverse effect on metformin urinary excretion via regulating Octs and Mates expression in the kidney of mice.  相似文献   
34.
35.
Tumor cellular senescence induced by genotoxic treatments has recently been found to be paradoxically linked to the induction of “stemness.” This observation is critical as it directly impinges upon the response of tumors to current chemo-radio-therapy treatment regimens. Previously, we showed that following etoposide (ETO) treatment embryonal carcinoma PA-1 cells undergo a p53-dependent upregulation of OCT4A and p21Cip1 (governing self-renewal and regulating cell cycle inhibition and senescence, respectively). Here we report further detail on the relationship between these and other critical cell-fate regulators. PA-1 cells treated with ETO display highly heterogeneous increases in OCT4A and p21Cip1 indicative of dis-adaptation catastrophe. Silencing OCT4A suppresses p21Cip1, changes cell cycle regulation and subsequently suppresses terminal senescence; p21Cip1-silencing did not affect OCT4A expression or cellular phenotype. SOX2 and NANOG expression did not change following ETO treatment suggesting a dissociation of OCT4A from its pluripotency function. Instead, ETO-induced OCT4A was concomitant with activation of AMPK, a key component of metabolic stress and autophagy regulation. p16ink4a, the inducer of terminal senescence, underwent autophagic sequestration in the cytoplasm of ETO-treated cells, allowing alternative cell fates. Accordingly, failure of autophagy was accompanied by an accumulation of p16ink4a, nuclear disintegration, and loss of cell recovery. Together, these findings imply that OCT4A induction following DNA damage in PA-1 cells, performs a cell stress, rather than self-renewal, function by moderating the expression of p21Cip1, which alongside AMPK helps to then regulate autophagy. Moreover, this data indicates that exhaustion of autophagy, through persistent DNA damage, is the cause of terminal cellular senescence.  相似文献   
36.
POU5F1 (more commonly known as OCT4/3) is one of the stem cell markers, and affects direction of differentiation in embryonic stem cells. To investigate whether cells of mesenchymal origin acquire embryonic phenotypes, we generated human cells of mesodermal origin with overexpression of the chimeric OCT4/3 gene with physiological co-activator EWS (product of the EWSR1 gene), which is driven by the potent EWS promoter by translocation. The cells expressed embryonic stem cell genes such as NANOG, lost mesenchymal phenotypes, and exhibited embryonal stem cell-like alveolar structures when implanted into the subcutaneous tissue of immunodeficient mice. Hierarchical analysis by microchip analysis and cell surface analysis revealed that the cells are subcategorized into the group of human embryonic stem cells and embryonal carcinoma cells. These results imply that cells of mesenchymal origin can be traced back to cells of embryonic phenotype by the OCT4/3 gene in collaboration with the potent cis-regulatory element and the fused co-activator. The cells generated in this study with overexpression of chimeric OCT4/3 provide us with insight into cell plasticity involving OCT4/3 that is essential for embryonic cell maintenance, and the complexity required for changing cellular identity.  相似文献   
37.
38.
提高光学相干层析成像(OpticalCoherenceTomography:OCT)系统纵向分辨率的关键是选取合适的光源,本文将双SLD光源代替传统OCT系统中的单个SLD光源,通过理论分析和计算机仿真,表明双SLD光源能有效提高OCT系统纵向分辨率。  相似文献   
39.
We describe a procedure for the rapid production and maintenance of fresh frozen bone biopsies which can be used for a variety of immunohistochemical techniques. Within 5 min of excision. tissue is placed in cold 5% polyvinyl alcohol, surrounded with 3% carboxymethylcel-lulose in a hand made aluminum foil embedding mold and frozen by immersion in an absolute ethanol/dry ice slurry at -70 C. The tissue block is attached to the specimen stub with cryocom-pound and installed in a -32 C cryostat whose tungsten carbide D profile knife is maintained at -70 C. Automatic controls are set at a slow cutting speed and the “sectioning window” is adjusted to fit the biopsy size. Knife angle, thickness gauge and antiroll bar are changed to produce a complete section. The block face is smoothly “papered” with a polyvinylpyrrolidone (PVP) impregnated Ross lens paper strip. A single section is cut and positioned on a sequentially numbered, acid cleaned, double dipped chrome-alum gelatin coated slide: adhesion is aided by “press-blotting” with bibulous paper. Sections are stored at -20 C or in a desiccator at room temperature. A brief fixation followed by removal of the water soluble PVP and lens paper generates fresh frozen bone sections suitable for further analysis.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号