首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3601篇
  免费   627篇
  国内免费   212篇
  2024年   12篇
  2023年   124篇
  2022年   120篇
  2021年   279篇
  2020年   306篇
  2019年   352篇
  2018年   216篇
  2017年   176篇
  2016年   160篇
  2015年   162篇
  2014年   230篇
  2013年   310篇
  2012年   218篇
  2011年   212篇
  2010年   138篇
  2009年   122篇
  2008年   112篇
  2007年   155篇
  2006年   121篇
  2005年   112篇
  2004年   96篇
  2003年   99篇
  2002年   50篇
  2001年   58篇
  2000年   65篇
  1999年   55篇
  1998年   40篇
  1997年   39篇
  1996年   37篇
  1995年   34篇
  1994年   26篇
  1993年   33篇
  1992年   23篇
  1991年   19篇
  1990年   11篇
  1989年   24篇
  1988年   12篇
  1987年   14篇
  1986年   12篇
  1985年   14篇
  1984年   9篇
  1983年   9篇
  1982年   8篇
  1981年   5篇
  1980年   5篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1958年   1篇
排序方式: 共有4440条查询结果,搜索用时 187 毫秒
991.
The timely regulation of inflammatory M1 macrophage polarization toward regenerative M2 macrophages suggests the possibility of immunotherapy after myocardial infarction (MI). C1q/TNF-related protein-9 (CTRP9) has anti-inflammatory effects and can ameliorate heart function in mice after long-term myocardial infarction. The role of CTRP9 in macrophage polarization remains completely unclear. This study determined whether CTRP9 can preserve post-MI early cardiac function through the regulation of macrophage polarization. In the present study, an adenovirus-delivered CTRP9 supplement promoted macrophage polarization at Day 3 post MI and improved cardiac function at Day 7 post MI. Pretreatment with gCTRP9 promoted the M1 to M2 polarization transition and attenuated inflammation after lipopolysaccharide + interferon-γ stimulation; the effects were partly abrogated by the adenosine monophosphate kinase (AMPK) inhibitor compound C and were obviously reinforced by pyrrolidine dithiocarbamate, a nuclear factor-κB (NF-κB) inhibitor. Meanwhile, CTPR9 markedly reduced the expression of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and NF-κB p65 phosphorylation by promoting AMPK phosphorylation in vivo and in vitro. Moreover, the competitive binding of gCTRP9 and LPS to the myeloid differentiation protein 2 (MD2)/TLR4 complex was associated with direct binding to MD2, thereby inhibiting the downstream signaling molecule MyD88. Taken together, we demonstrated that CTRP9 improved post-MI early cardiac function, at least in part, by modulating M1/M2 macrophage polarization, largely via the TLR4/MD2/MyD88 and AMPK-NF-κB pathways.  相似文献   
992.
Nucleolin is a multifunctional phosphoprotein and is involved in protecting from myocardial ischemia/reperfusion (I/R) injury. The function of nucleolin is regulated by posttranslational modifications, including phosphorylation and glycosylation. To study whether phosphorylation of nucleolin (P-nucleolin) was involved in the protection from myocardial I/R injury. We investigated the expression pattern of P-nucleolin (Thr-76 and 84) in hearts subjected to I/R injury, or rat cardiac myoblast cells (H9C2) subjected to hydrogen peroxide (H 2O 2). The results showed that the expression of P-nucleolin and the ratio of P-nucleolin/nucleolin were significantly increased both in vivo and in vitro. Mutant nucleolin was obtained by site directed mutagenesis in vitro: threonine at 76 and 84 was replaced by alanine, and we found that the protective effect of nucleolin on apoptosis induced by oxidative stress was dependent on its phosphorylation at 76 and 84 in H9C2 cells. Furthermore, the cardio-protective roles of P-nucleolin (Thr-76 and 84) in H9C2 cardiomyocytes, were attributable to the upregulation of microRNA (miR)-21. Further analysis found that P-nucleolin (Thr-76 and 84) could bind to miR-21, and P-nucleolin colocalized with argonaute 2 (Ago2) in cytoplasm and could interact with Ago2 in a RNA-independent manner under cell oxidative stress. The current study revealed that P-nucleolin (Thr-76 and 84) increased in I/R injury myocardium, P-nucleolin was indispensable to upregulate miR-21 and inhibited apoptosis induced by H 2O 2 in H9C2 cardiomyocytes. These findings provided new insight into the molecular mechanisms of nucleolin in myocardial I/R injury and oxidative stress cells.  相似文献   
993.
994.
The role of mitochondrial dysfunction and its molecular mechanism in inflammation-induced acute liver failure (ALF) remain unknown. Despite the numerous studies performed to date, very few therapies are available for inflammation-induced ALF. Therefore, our study is aimed to explore the regulatory effects of mitochondrial stress and the Akt-Sirt3 pathway on the development of TNF-α-induced hepatocyte death and assess the therapeutic effects of melatonin on the damaged liver. Our results exhibited that TNF-α treatment induced hepatocyte damage in vitro; the effect of which was dose-dependently inhibited by melatonin. At the molecular level, TNF-α-treated hepatocytes expressed lower levels of Sirt3 and subsequently exhibited mitochondrial stress. Interestingly, melatonin treatment improved mitochondrial bioenergetics, reduced mitochondrial oxidative stress, reversed mitochondrial dynamics, and repressed mitochondrial apoptosis by reversing the decrease in Sirt3 expression after TNF-α challenge. In addition, we found that melatonin-regulated Sirt3 expression in a manner dependent on the Akt pathway. Blockade of the Akt pathway abolished the protective exerted by melatonin on mitochondria and hepatocyte under TNF-α treatment. In conclusion, TNF-α promotes hepatocyte apoptosis by inducing mitochondrial stress. However, melatonin significantly increases the activity of the Akt/Sirt3 axis and consequently maintains mitochondrial homeostasis, restoring hepatocyte viability in an inflammatory environment. Thus, the information compiled here might provide important perspectives for the use of melatonin in the clinic for preventive and therapeutic applications in patients with ALF based on its anti-inflammatory and mitochondria-protective effects.  相似文献   
995.
Decreasing bone marrow (BM) microvessel density and circulating angiogenic cytokine levels are promising strategies for the treatment of relapsed and resistant acute myeloid leukemia (AML). Previous studies have reported that wogonoside could inhibit the progression of AML and suppress angiogenesis in a solid tumor, but the correlation of these two effects was ignored. In this research, we determined whether wogonoside could inhibit angiogenesis in this hematologic malignancy. We found that wogonoside could inhibit tumor growth and progression, and prolong the survival of nude mice inoculated with U937/MDR. Besides, reducing BM angiogenesis might cause therapeutic effect against resistant AML. Therefore, coculture between AML cells and BM stromal cells was established to imitate their crosstalk. Then, the effect of wogonoside on BM angiogenesis was tested in vitro and in vivo. We found that wogonoside could suppress microvessel formation in the chicken chorioallantoic membrane assay model and matrigel plug assay. The mechanism research revealed that wogonoside could block the JAK2-STAT3 pathway in AML cells and stromal cells to break their positive feedback. We detected several cytokines related to AML or angiogenesis and found that secreted interleukin-8 was a significant angiogenic cytokine to induce BM angiogenesis. These findings supported that new diagnostics and promising treatment strategies could be developed in relapsed and resistant AML patients.  相似文献   
996.
997.
Autophagy is the general term of lysosomal degradation of substances in cells, which is considered the key to maintaining the normal structure and function of the heart. It also has a correlation with several heart diseases, in particular, myocardial ischemia/reperfusion (I/R) injury. At the stage of myocardial ischemia, autophagy degrades nonfunctional cytoplasmic proteins providing the critical nutrients for the critical life activities, thereby suppressing cell apoptosis and necrosis. However, autophagy is likely to affect the heart negatively in the reperfusion stage. Mammalian target of rapamycin (mTOR) and Beclin1 are two vital autophagy-related molecules in myocardial I/R injury playing significant roles in different stages. In the ischemia stage, mTOR plays its roles through AMPK/mTOR and phosphoinositide 3-kinase/Akt/mTOR pathway, whereas Beclin1 plays its roles through its upregulation in the reperfusion stage. A possible interaction between mTOR and Beclin1 has been reported recently, and further studies need to be done to find the underlying interaction between the two molecules in myocardial I/R injury  相似文献   
998.
A growing body of evidence is pointing out the pathophysiological role of fat accumulation in different organs. Ectopic fat depots within heart, liver, skeletal muscle, kidney, and pancreas as well as around blood vessels might be more associated to cardiometabolic risk than classical variables, such as body mass index. Among different mechanisms, lipid metabolism appears to be particularly influenced by ectopic fat depots. Indeed, intracellular accumulation of nonesterified fatty acids, and triglycerides promotes endoplasmic reticulum stress, mitochondrial uncoupling, oxidative stress, and altered membrane composition/function, finally promoting inflammatory response and cell death. The dysfunctional adipose tissue was shown to induce both local and systemic effects, with relevant clinical consequences. Epicardial fat and myocardial steatosis have been associated with the development of atrial fibrillation and ventricular dysfunction. Similarly perivascular adipose tissue appears to trigger atherosclerosis and hypertension. Nonalcoholic fatty liver disease has been recognized both as the hepatic manifestation of metabolic syndrome and as a cardiovascular (CV) risk factor. Importantly, the renal sinus fat emerged as a potential player in kidney dysfunction. Finally, both skeletal muscle and pancreatic fat depots have been indicated as potential endocrine modulators of insulin resistance. Considering the global rise in the prevalence of obesity, the understanding of mechanisms underlying ectopic fat accumulation represents an urgent need, with potential clinical implications for CV risk stratification. Here, we attempt to update the current knowledge of the different ectopic fat depots, focusing on underlying mechanisms and potential clinical implications.  相似文献   
999.
A rapid increase in common carp Cyprinus carpio plasma cortisol levels was noted, in two experiments, after 30 mins of a 3 h net confinement, which was sustained while the fish were held in the nets. After release from the nets, cortisol levels returned to control values in 1 h. Plasma glucose and free fatty acid levels were elevated by the confinement. Glucose was increased after 30 min but returned to basal levels after 22 h of recovery while free fatty acids were not elevated until 3 h of confinement and remained high for the duration of the recovery period. After confinement for 3 h, plasma lactate levels were reduced and remained low for a further 1 h. No change in either plasma triglyceride or cholesterol levels were found during the study. Confinement had no effect on haematocrit levels but blood haemoglobin levels were reduced. In both experiments hypochloraemia occurred in response to confinement. However, values returned to pre-confinement levels 22 h after confinement. These results show that rearing isogenic carp strains, under identical conditions, results in a reproducable response to an acute stressor and that these carp respond in a similar manner to other teleost species.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号