首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13043篇
  免费   813篇
  国内免费   773篇
  2024年   30篇
  2023年   236篇
  2022年   343篇
  2021年   472篇
  2020年   431篇
  2019年   465篇
  2018年   470篇
  2017年   360篇
  2016年   363篇
  2015年   465篇
  2014年   496篇
  2013年   685篇
  2012年   351篇
  2011年   455篇
  2010年   325篇
  2009年   518篇
  2008年   531篇
  2007年   597篇
  2006年   524篇
  2005年   448篇
  2004年   408篇
  2003年   397篇
  2002年   316篇
  2001年   219篇
  2000年   206篇
  1999年   251篇
  1998年   269篇
  1997年   232篇
  1996年   236篇
  1995年   227篇
  1994年   243篇
  1993年   239篇
  1992年   239篇
  1991年   216篇
  1990年   197篇
  1989年   193篇
  1988年   165篇
  1987年   188篇
  1986年   209篇
  1985年   225篇
  1984年   247篇
  1983年   135篇
  1982年   167篇
  1981年   163篇
  1980年   127篇
  1979年   118篇
  1978年   56篇
  1977年   53篇
  1976年   49篇
  1975年   23篇
排序方式: 共有10000条查询结果,搜索用时 331 毫秒
991.
大豆食品中通常富含染料木素和大豆苷元等异黄酮素,人和动物肠道中的某些细菌具有将异黄酮素代谢转化为S-雌马酚的能力。到目前为止,S-雌马酚被认为是一种具有潜在健康调节作用的化合物。啮齿类动物均具备产雌马酚的能力,但不同人群之间存在差异,产雌马酚细菌是否存在可能是造成这种差异的重要原因;不同产雌马酚细菌的代谢机制可能不同,并影响机体最终产雌马酚的能力。本文对已知的各种产雌马酚细菌及其细菌的雌马酚合成机制进行综述,以期为进一步了解雌马酚产生个体差异、雌马酚代谢转化效率、体外雌马酚的发酵生产,以及临床产雌马酚细菌的应用等提供理论参考。  相似文献   
992.
新型产甲烷古菌研究进展   总被引:9,自引:4,他引:5  
产甲烷古菌是一类能利用简单化合物产生甲烷气体的厌氧菌。近年来,随着测序技术的不断发展,科学家结合宏基因组学和其他技术先后发现了众多之前未被报道的新型产甲烷古菌。基因组分析等研究发现这几类新型产甲烷古菌具有独特的甲烷代谢通路以及广泛的生态分布,科学家推测它们在全球生态调节以及碳循环中可能起到了不可忽视的作用。然而,这些新型产甲烷古菌大部分尚未通过传统培养方法获得纯培养菌株,其确切的生理代谢机制和生态功能还有待深入研究。为了更加系统地了解这些新型产甲烷古菌,本文从它们的分类、系统发育地位、代谢机制、生态分布以及分离培养等方面进行了综述,并对新型产甲烷古菌未来的研究方向进行了展望。  相似文献   
993.
The methanotrophic bacterium Methylococcus capsulatus is capable of assimilating methane and oxygen into protein-rich biomass, however, the diverse metabolism of the microorganism also allows for several undesired cometabolic side-reactions to occur. In this study, the ammonia cometabolism in Methylococcus capsulatus is investigated using pulse experiments. Surprisingly Methylococcus capsulatus oxidizes ammonia to nitrate through a yet unknown mechanism and fixes molecular nitrogen even at a high dissolved oxygen tension. The observed phenomena can be modeled using 14 ordinary differential equations and 18 kinetic parameters, of which 6 were revealed by Morris screening to be identifiable from the experimental data. Monte Carlo simulations showed that the model was robust and accurate even with uncertainty in the parameter values as confirmed by statistical error analysis.  相似文献   
994.
Solvent-tolerant bacteria represent an interesting option to deal with the substrate and product toxicity in bioprocesses. Recently, constitutive solvent tolerance was achieved for Pseudomonas taiwanensis VLB120 via knockout of the regulator TtgV, making tedious adaptation unnecessary. Remarkably, ttgV knockout increased styrene epoxidation activities of P. taiwanensis VLB120Δ C. With the aim to characterize and exploit the biocatalytic potential of P. taiwanensis VLB120Δ C and VLB120Δ CΔ ttgV, we investigated and correlated growth physiology, native styrene monooxygenase (StyAB) gene expression, whole-cell bioconversion kinetics, and epoxidation performance. Substrate inhibition kinetics was identified but was attenuated in two-liquid phase bioreactor setups. StyA fusion to the enhanced green fluorescent protein enabled precise enzyme level monitoring without affecting epoxidation activity. Glucose limitation compromised styAB expression and specific activities (30–40 U/g CDW for both strains), whereas unlimited batch cultivation enabled specific activities up to 180 U/g CDW for VLB120Δ CΔ ttgV strains, which is unrivaled for bioreactor-based whole-cell oxygenase biocatalysis. These extraordinarily high specific activities of constitutively solvent-tolerant P. taiwanensis VLB120∆ CttgV could be attributed to its high metabolic capacity, which also enabled high expression levels. This, together with the high product yields on glucose and biomass obtained qualifies the VLB120∆ ttgV strain as a highly attractive tool for the development of ecoefficient oxyfunctionalization processes and redox biocatalysis in general.  相似文献   
995.
996.
Dysregulated Wnt signaling is linked to major neurodegenerative diseases, including Alzheimer disease (AD). In mouse models of AD, activation of the canonical Wnt signaling pathway improves learning/memory, but the mechanism for this remains unclear. The decline in brain function in AD patients correlates with reduced glucose utilization by neurons. Here, we test whether improvements in glucose metabolism mediate the neuroprotective effects of Wnt in AD mouse model. APPswe/PS1dE9 transgenic mice were used to model AD, Andrographolide or Lithium was used to activate Wnt signaling, and cytochalasin B was used to block glucose uptake. Cognitive function was assessed by novel object recognition and memory flexibility tests. Glucose uptake and the glycolytic rate were determined using radiotracer glucose. The activities of key enzymes of glycolysis such as hexokinase and phosphofructokinase, Adenosine triphosphate (ATP)/Adenosine diphosphate (ADP) levels and the pentose phosphate pathway and activity of glucose‐6 phosphate dehydrogenase were measured. Wnt activators significantly improved brain glucose utilization and cognitive performance in transgenic mice. Wnt signaling enhanced glucose metabolism by increasing the expression and/or activity of hexokinase, phosphofructokinase and AMP‐activated protein kinase. Inhibiting glucose uptake partially abolished the beneficial effects of Wnt signaling on learning/memory. Wnt activation also enhanced glucose metabolism in cortical and hippocampal neurons, as well as brain slices derived from APPswe/PS1E9 transgenic mice. Combined, these data provide evidence that the neuroprotective effects of Wnt signaling in AD mouse models result, at least in part, from Wnt‐mediated improvements in neuronal glucose metabolism.  相似文献   
997.
998.
999.
Fruit and seed crop production heavily relies on successful stigma pollination, pollen tube growth, and fertilization of female gametes. These processes depend on production of viable pollen grains, a process sensitive to high‐temperature stress. Therefore, rising global temperatures threaten worldwide crop production. Close observation of plant development shows that high‐temperature stress causes morpho‐anatomical changes in male reproductive tissues that contribute to reproductive failure. These changes include early tapetum degradation, anther indehiscence, and deformity of pollen grains, all of which are contributing factors to pollen fertility. At the molecular level, reactive oxygen species (ROS) accumulate when plants are subjected to high temperatures. ROS is a signalling molecule that can be beneficial or detrimental for plant cells depending on its balance with the endogenous cellular antioxidant system. Many metabolites have been linked with ROS over the years acting as direct scavengers or molecular stabilizers that promote antioxidant enzyme activity. This review highlights recent advances in research on anther and pollen development and how these might explain the aberrations seen during high‐temperature stress; recent work on the role of nitrogen and carbon metabolites in anther and pollen development is discussed including their potential role at high temperature.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号