首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5911篇
  免费   323篇
  国内免费   624篇
  2023年   41篇
  2022年   70篇
  2021年   99篇
  2020年   110篇
  2019年   159篇
  2018年   142篇
  2017年   131篇
  2016年   122篇
  2015年   122篇
  2014年   211篇
  2013年   268篇
  2012年   167篇
  2011年   300篇
  2010年   194篇
  2009年   321篇
  2008年   335篇
  2007年   380篇
  2006年   323篇
  2005年   272篇
  2004年   250篇
  2003年   204篇
  2002年   170篇
  2001年   118篇
  2000年   128篇
  1999年   135篇
  1998年   132篇
  1997年   121篇
  1996年   112篇
  1995年   97篇
  1994年   107篇
  1993年   121篇
  1992年   117篇
  1991年   96篇
  1990年   89篇
  1989年   93篇
  1988年   86篇
  1987年   99篇
  1986年   125篇
  1985年   104篇
  1984年   129篇
  1983年   63篇
  1982年   87篇
  1981年   79篇
  1980年   72篇
  1979年   57篇
  1978年   20篇
  1977年   27篇
  1976年   15篇
  1975年   9篇
  1973年   9篇
排序方式: 共有6858条查询结果,搜索用时 31 毫秒
61.
Gas exchange and abscisic acid content of Digitalis lanata EHRH. have been examined at different levels of plant water stress. Net photosynthesis, transpiration and conductance of attached leaves declined rapidly at first, then more slowly following the withholding of irrigation. The intercellular partial pressure of CO2 decreased slightly. The concentration of 2-cis(S)ABA increased about eight-fold in the leaves of non-irrigated plants as compared with well-watered controls. A close linear correlation was found between the ABA content of the leaves and their conductance on a leaf area basis. In contrast, the plot of net assimilation versus ABA concentration was curvilinear, leading to an increased efficiency of water use during stress. After rewatering, photosynthesis reached control values earlier than transpiration, leaf conductance and ABA content. From these data it is concluded that transpiration through the stomata is directly controlled by the ABA content, whereas net photosynthesis is influenced additionally by other factors.Possible reasons for the responses of photosynthesis and water use efficiency to different stress and ABA levels are discussed.Abbreviations A net CO2 assimilation - ABA abscisic acid - Ci intercellular CO2 concentration - g stomatal conductance - T transpiration - WUE water use efficiency  相似文献   
62.
Determinants of foraging profitability in two nectarivorous butterflies   总被引:1,自引:0,他引:1  
ABSTRACT.
  • 1 I studied flower selection and foraging energetics of Agraulis vanillae L. (Nymphalidae) and Phoebis sennae (Pieridae), two butterfly species common to north central Florida. I identified the major nectar resources exploited by several populations of these butterflies and, for each plant species, measured available nectar volumes and concentrations, corolla lengths, and density. I quantified foraging behaviour of each butterfly species at each nectar source (flower visitation rate and percentage of foraging time in flight), and used these data to estimate the net rate of energy intake of each butterfly species at each nectar source.
  • 2 Estimated mean energy contents of individual flowers of the eleven exploited plant species spanned three orders of magnitude, ranging between 0.015 and 9.27 joules. Mean energy content of individual flowers was strongly correlated with mean foraging profit of both butterfly species.
  • 3 Mean nectar volume strongly influenced energy content and varied widely within and among species, ranging from 0.0076 to 1.853 μ1. Nectar concentration varied between 17.1% and 40.4% sucrose-equivalents. Nectar volume was the best single predictor of foraging profitability (correlation coefficients of 0.994 and 0.984 for Phoebis and Agraulis respectively). Corolla length also strongly affected foraging profitability for both butterfly species; flower species with longer corollas were generally more profitable.
  • 4 Flower density and nectar concentration showed weak or nonsignificant associations with foraging profitability.
  • 5 The usefulness and limitations of these floral characteristics as bases for foraging selectivity, and the selective pressures foraging butterflies might place on the visited plants are discussed.
  相似文献   
63.
64.
Summary Water and nitrogen regimes of Larrea tridentata shrubs growing in the field were manipulated during an annual cycle. Patterns of leaf water status, leaf water relations characteristics, and stomatal behavior were followed concurrently. Large variations in leaf water status in both irrigated and nonirrigated individuals were observed. Predawn and midday leaf water potentials of nonirrigated shrubs were lowest except when measurements had been preceded by significant rainfall. Despite the large seasonal variation in leaf water status, reasonably constant, high levels of turgor were maintained. Pressure-volume curve analysis suggested that changes in the bulk leaf osmotic potential at full turgor were small and that nearly all of the turgor adjustment was due to tissue elastic adjustment. The increase in tissue elasticity with increasing water deficit manifested itself as a decrease in the relative water content at zero turgor and as a decrease in the tissue bulk elastic modulus. Because of large hydration-induced displacement in the osmotic potential and relative water content at zero turgor, it was necessary to use shoots in their natural state of hydration for pressure-volume curve determinations. Large diurnal and seasonal differences in maximum stomatal conductance were observed, but could not easily be attributed to variations in leaf water potential or leaf water relations characteristics such as the turgor loss point. The single factor which seemed to account for most of the diurnal and seasonal differences in maximum stomatal conductance between individual shrubs was an index of soil/root/ shoot hydraulic resistance. Daily maximum stomatal conductance was found to decrease with increasing soil/root/ shoot hydraulic resistance. This pattern was most consistent if the hydraulic resistance calculation was based on an estimate of total canopy transpiration rather than the more commonly used transpiration per unit leaf area. The reasons for this are discussed. It is suggested that while stomatal aperture necessarily represents a major physical resistance controlling transpiration, plant hydraulic resistance may represent the functional resistance through its effects on stomatal aperture.  相似文献   
65.
Martin Sprung  Udo Rose 《Oecologia》1988,77(4):526-532
Summary In common with many other suspension feeders, the freshwater mussel Dreissena polymorpha has a maximum filtration rate at low food concentrations and a maximum ingestion rate at high food concentrations. These high rates, which reflect the potential maximum food uptake of the animal, are called the filtration capacity and the ingestion capacity respectively. The ingestion capacity was attained without forming pseudofaeces with Chlamydomonas reinhardii as food. The incipient limiting level could be calculated as the quotient of these two values. A decrease of the filtration rate at high food concentrations was correlated with changes in pumping activity, which showed more frequent interruptions, or a lower level of water transport. Dreissena can filter out particles of diameter greater than 0.7 m from the water. Retention reaches a plateau at about 5 m particle diameter. Scanning electron micrographs of the arrangement of the cilia on the gill filaments are given.  相似文献   
66.
Summary The effects of CO2 enrichment on the growth, biomass partitioning, photosynthetic rates, and leaf nitrogen concentration of a grass, Bromus mollis (C3), were investigated at a favorable and a low level of nitrogen availability. Despite increases in root: shoot ratios, leaf nitrogen concentrations were decreased under CO2 enrichment at both nitrogen levels. For the low-nitrogen treatment, this resulted in lower photosynthetic rates measured at 650 l/l for the CO2-enriched plants, compared to photosynthetic rates measured at 350 l/l for the non-enriched plants. At higher nitrogen availability, photosynthetic rates of plants grown and measured at 650 l/l were greater than photosynthetic rates of the non-enriched plants measured at 350 l/l. Water use efficiency, however, was increased in enriched plants at both nitrogen levels. CO2 enrichment stimulated vegetative growth at both high and low nitrogen during most of the vegetative growth phase but, at the end of the experiment, total biomass of the high and low CO2 treatments did not differ for plants grown at low nitrogen availability. While not statistically significant, CO2 tended to stimulate seed production at high nitrogen and to decrease it at low nitrogen.  相似文献   
67.
Six Argentinian wheat ( Triticum aestivum L.) cultivars grown in nutrient solutions in controlled environment were compared for their nitrate uptake rates on a root dry weight basis. Up to 3-fold differences were observed among the cultivars at 16, 20 and 24 days from germination, either when measured by depletion from the nutrient solution in short-term experiments, or by total N accumulation in the tissue during 8 days.
No differences in total N concentration in root or shoots were found among cultivars. Although the different cultivars showed significant differences in shoot/root ratio and nitrate reductase activity (EC 1.6.6.1) in the roots, none of these parameters was correlated with the nitrate uptake rate. However, nitrate uptake was found to be positively correlated (r = 0.99) with the shoot relative growth rate of the cultivars. The three cultivars with the highest nitrate uptake rates and relative growth rates showed a positive correlation between root nitrate concentration and uptake. However, this correlation was not found in the cultivars with the lowest growth and uptake rates.
Our results indicate that the difference in nitrate uptake rate among these cultivars may only be a consequence of their differences in growth rate, and it is suggested that at least two mechanisms regulate nitrate uptake, one working when plant demand is low and another when plant demand is high.  相似文献   
68.
Barley (Hordeum vulgare L.) and tomato Lycopersicon esculentum Mill.) were grown hydroponically and examined 2, 5, and 10 d after being deprived of nitrogen (N) supply. Leaf elongation rate declined in both species in response to N stress before there was any reduction in rate of dryweight accumulation. Changes in water transport to the shoot could not explain reduced leaf elongation in tomato because leaf water content and water potential were unaffected by N stress at the time leaf elongation began to decline. Tomato maintained its shoot water status in N-stressed plants, despite reduced water absorption per gram root, because the decline in root hydraulic conductance with N stress was matched by a decline in stomatal conductance. In barley the decline in leaf elongation coincided with a small (8%) decline in water content per unit area of young leaves; this decline occurred because root hydraulic conductance was reduced more strongly by N stress than was stomatal conductance. Nitrogen stress caused a rapid decline in tissue NO 3 - pools and in NO 3 - flux to the xylem, particularly in tomato which had smaller tissue NO 3 - reserves. Even in barley, tissue NO 3 - reserves were too small and were mobilized too slowly (60% in 2 d) to support maximal growth for more than a few hours. Organic N mobilized from old leaves provided an additional N source to support continued growth of N-stressed plants. Abscisic acid (ABA) levels increased in leaves of both species within 2 d in response to N stress. Addition of ABA to roots caused an increase in volume of xylem exudate but had no effect upon NO 3 - flux to the xylem. After leaf-elongation rate had been reduced by N stress, photosynthesis declined in both barley and tomato. This decline was associated with increased leaf ABA content, reduced stomatal conductance and a decrease in organic N content. We suggest that N stress reduces growth by several mechanisms operating on different time scales: (1) increased leaf ABA content causing reduced cell-wall extensibility and leaf elongation and (2) a more gradual decline in photosynthesis caused by ABA-induced stomatal closure and by a decrease in leaf organic N.Abbreviation and symbols ABA abscisic acid - ci leaf internal CO2 concentration - Lp root hydraulic conductance  相似文献   
69.
Summary Quantitative electron microprobe analysis was employed to compare the effects of aldosterone and ADH on the intracellular electrolyte concentrations in the toad urinary bladder epithelium. The measurements were performed on thin freeze-dried cryosections utilizing energy dispersive x-ray microanalysis. After aldosterone, a statistically significant increase in the intracellular Na concentration was detectable in 8 out of 9 experiments. The mean Na concentration of granular cells increased from 8.9±1.3 to 13.2±2.2 mmol/kg wet wt. A significantly larger Na increase was observed after an equivalent stimulation of transepithelial Na transport by ADH. On average, the Na concentration in granular cells increased from 12.0±2.3 to 31.4±9.3 mmol/kg wet wt (5 experiments). We conclude from these results that aldosterone, in addition to its stimulatory effect on the apical Na influx, also exerts a stimulatory effect on the Na pump. Based on a significant reduction in the Cl concentration of granular cells, we discuss the possibility that the stimulation of the pump is mediated by an aldosterone-induced alkalinization.Similar though less pronounced concentration changes were observed in basal cells, suggesting that this cell type also participates in transepithelial Na transport. Measurements in mitochondria-rich cells provided no consistent results.  相似文献   
70.
Similar ranges of gibberellins (GAs) were detected by high-performance liquid chromatography (HPLC)-immunoassay procedures in ten cultures of wild-type and mutant strains of Rhizobium phaseoli. The major GAs excreted into the culture medium were GA1 and GA4. These identifications were confirmed by combined gas chromatographymass spectrometry. The HPLC-immunoassays also detected smaller amounts of GA9- as well as GA20-like compounds, the latter being present in some but not all cultures. In addition to GAs, all strains excreted indole-3-acetic acid (IAA) but there was no obvious relationship between the amounts of GA and IAA that accumulated. The Rhizobium strains studied included nod and fix mutants, making it unlikely that the IAA- and GA-biosynthesis genes are closely linked to the genes for nodulation and nitrogen fixation.The HPLC-immunoassay analyses showed also that nodules and non-nodulated roots of Phaseolus vulgaris L. contained similar spectra of GAs to R. phaseoli culture media. The GA pools in roots and nodules were of similar size, indicating that Rhizobium does not make a major contribution to the GA content of the infected tissue.Abbreviations EIA enzyme immunoassay - GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - Me methyl ester - RIA radioimmunoassay - TLC thin-layer chromatography  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号