首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   2篇
  国内免费   2篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   6篇
  2014年   11篇
  2013年   8篇
  2012年   9篇
  2011年   13篇
  2010年   11篇
  2009年   9篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   7篇
  2004年   2篇
  2002年   3篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1994年   4篇
  1992年   1篇
  1982年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
61.
The Niemann-Pick C1 Like 1 (NPC1L1) is a predicted polytopic membrane protein that is critical for cholesterol absorption. NPC1L1 takes up free cholesterol into cells through vesicular endocytosis. Ezetimibe, a clinically used cholesterol absorption inhibitor, blocks the endocytosis of NPC1L1 thereby inhibiting cholesterol uptake. Human NPC1L1 is a 1,332-amino acid protein with a putative sterol-sensing domain (SSD) that shows sequence homo­logy to HMG-CoA reductase (HMGCR), Niemann-Pick C1 (NPC1), and SREBP cleavage-activating protein (SCAP). Here, we use protease protection and immunofluorescence in selectively permeabilized cells to study the topology of human NPC1L1. Our data indicate that NPC1L1 contains 13 transmembrane helices. The NH2-terminus of NPC1L1 is in the lumen while the COOH-terminus projects to the cytosol. human NPC1L1 contains seven small cytoplasmic loops—four small and three large luminal loops—one of which has been reported to bind ezetimibe. Ezetimibe-glucuronide, the major metabolite of ezetimibe in vivo, can block the internalization of NPC1L1 and cholesterol. The membrane topology of NPC1L1 is similar to that of NPC1, and the putative SSD of NPC1L1 is oriented in the same manner as those of HMGCR, NPC1, and SCAP. The defined topology of NPC1L1 provides necessary information for further dissecting the functions of the different domains of NPC1L1.  相似文献   
62.
Chloroquine (CQ) is a widely prescribed anti-malarial agent and is also prescribed to treat autoimmune diseases. Clinical treatment with CQ is often accompanied by serious side effects such as hepatitis and retinopathy. As a weak base, CQ accumulates in intracellular acidic organelles, raises the pH, and induces osmotic swelling and permeabilization of acidic organelles, which account for CQ-induced cytotoxicity. We reported previously that CQ treatment caused α-tocopherol transfer protein (α-TTP), a gene product of familial vitamin E deficiency, to change its location from the cytosol to the surface of acidic organelles. Here we show that α-TTP plays a novel role in protecting against CQ toxicity both in vitro and in vivo. In the presence of CQ, rat hepatoma McARH7777 cells, which do not express α-TTP endogenously, showed more severe cytotoxicity, such as larger vacuolation of acidic organelles and caspase activation, than α-TTP transfectant cells. Similarly, α-TTP knockout mice showed more severe CQ toxicity, such as hepatotoxicity and retinopathy, than wild-type mice. These effects were not ameliorated by vitamin E supplementation. In contrast to bafilomycin A1 treatment, which prevents CQ accumulation in cells by raising the pH of acidic organelles, α-TTP expression prevented CQ accumulation without affecting the pH of acidic organelles. Taken together, our data suggest that α-TTP protects against CQ toxicity by preventing CQ accumulation in acidic organelles through a mechanism distinct from vitamin E transport.  相似文献   
63.
Membrane proteins that bind and transport lipids face special challenges. Since lipids typically have low water solubility, both accessibility of the substrate to the protein and delivery to the desired destination are problematical. The amphipathic nature of membrane lipids, and their relatively large molecular size, also means that these proteins must possess substrate-binding sites of a different nature than those designed to handle small polar molecules. This review considers two integral proteins whose function is to bind and transfer membrane lipids within or across a membrane. The first protein, MsbA, is a putative lipid flippase that is a member of the ATP-binding cassette (ABC) superfamily. The protein is found in the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria such as E. coli, where it is proposed to move lipid A from the inner to the outer membrane (OM) leaflet, an important step in the lipopolysaccharide biosynthetic pathway. Cholesterol is a major component of the plasma membrane in eukaryotic cells, where it regulates bilayer fluidity. The other lipid-binding protein discussed here, mammalian NPC1 (Niemann-Pick disease, Type C1), binds cholesterol inside late endosomes/lysosomes (LE/LY) and is involved in its transfer to the cytosol as part of a key intracellular sterol-trafficking pathway. Mutations in NPC1 lead to a devastating neurodegenerative condition, Niemann-Pick Type C disease, which is characterized by massive cholesterol accumulation in LE/LY. The accelerating pace of membrane protein structure determination over the past decade has allowed us a glimpse of how lipid binding and transfer by membrane proteins such as MsbA and NPC1 might be achieved.  相似文献   
64.
Ezetimibe is a cholesterol-lowering agent targeting Niemann-Pick C1-like 1, an intestinal cholesterol transporter. Inhibition of intestinal cholesterol absorption with ezetimibe may ameliorate several metabolic disorders including hepatic steatosis and insulin resistance. In this study, we investigated whether chronic ezetimibe treatment improves glycemic control and pancreatic beta cell mass, and alters levels of glucagon-like peptide-1 (GLP-1), an incretin hormone involved in glucose homeostasis. Male LETO and OLETF rats were treated with vehicle or ezetimibe (10 mg kg−1 day−1) for 20 weeks via stomach gavage. OLETF rats were diabetic with hyperglycemia and significant decreases in pancreatic size and beta cell mass compared with LETO lean controls. Chronic treatment of OLETF rats with ezetimibe improved glycemic control during oral glucose tolerance test compared with OLETF controls. Moreover, ezetimibe treatment rescued the reduced pancreatic size and beta cell mass in OLETF rats. Interestingly, ezetimibe significantly decreased serum dipeptidyl peptidase-4 activity and increased serum active GLP-1 in OLETF rats without altering serum total GLP-1. These findings demonstrated that chronic administration of ezetimibe improves glycemic control and pancreatic beta cell mass, and increases serum active GLP-1 levels, suggesting possible involvement of GLP-1 in the ezetimibe-mediated beneficial effects on glycemic control.  相似文献   
65.
Gimpl G  Gehrig-Burger K 《Steroids》2011,76(3):216-231
Cholesterol is a multifunctional lipid in eukaryotic cells. It regulates the physical state of the phospholipid bilayer, is crucially involved in the formation of membrane microdomains, affects the activity of many membrane proteins, and is the precursor for steroid hormones and bile acids. Thus, cholesterol plays a profound role in the physiology and pathophysiology of eukaryotic cells. The cholesterol molecule has achieved evolutionary perfection to fulfill its different functions in membrane organization. Here, we review basic approaches to explore the interaction of cholesterol with proteins, with a particular focus on the high diversity of fluorescent and photoreactive cholesterol probes available today.  相似文献   
66.
Annexin A6 (AnxA6) belongs to a conserved family of Ca2+-dependent membrane-binding proteins. Like other annexins, the function of AnxA6 is linked to its ability to bind phospholipids in cellular membranes in a dynamic and reversible fashion, in particular during the regulation of endocytic and exocytic pathways. High amounts of AnxA6 sequester cholesterol in late endosomes, thereby lowering the levels of cholesterol in the Golgi and the plasma membrane. These AnxA6-dependent redistributions of cellular cholesterol pools give rise to reduced cytoplasmic phospholipase A2 (cPLA2) activity, retention of caveolin in the Golgi apparatus and a reduced number of caveolae at the cell surface. In addition to regulating cholesterol and caveolin distribution, AnxA6 acts as a scaffold/targeting protein for several signaling proteins, the best characterized being the Ca2+-dependent membrane targeting of p120GAP to downregulate Ras activity. AnxA6 also stimulates the Ca2+-inducible involvement of PKC in the regulation of HRas and possibly EGFR signal transduction pathways. The ability of AnxA6 to recruit regulators of the EGFR/Ras pathway is likely potentiated by AnxA6-induced actin remodeling. Accordingly, AnxA6 may function as an organizer of membrane domains (i) to modulate intracellular cholesterol homeostasis, (ii) to create a scaffold for the formation of multifactorial signaling complexes, and (iii) to regulate transient membrane-actin interactions during endocytic and exocytic transport. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   
67.
Niemann-Pick disease type C1 (NPC1), caused by mutations of NPC1 gene, is an inherited lysosomal lipid storage disorder. Loss of functional NPC1 causes the accumulation of free cholesterol (FC) in endocytic organelles that comprised the characteristics of late endosomes and/or lysosomes. In this study we analyzed the pathogenic effect of 103 nsSNPs reported in NPC1 using computational methods. Rl186C, S940L, R958Q and I1061T mutations were predicted as most deleterious and disease associated with NPC1 using SIFT, Polyphen 2.0, PANTHER, PhD-SNP, Pmut and MUTPred tools which were also endorsed with previous in vivo experimental studies. To understand the atomic arrangement in 3D space, the native and disease associated mutant (Rl186C, S940L, R958Q and I1061T) structures were modeled. Quantitative structural and flexibility analysis was conceded to observe the structural consequence of prioritized disease associated mutations (R1186C, S940L, R958Q and I1061T). Accessible surface area (ASA), free folding energy (FFE) and hydrogen bond (NH bond) showed more flexibility in 3D space in mutant structures. Based on the quantitative assessment and flexibility analysis of NPC1 variants, I1061T showed the most deleterious effect. Our analysis provides a clear clue to wet laboratory scientists to understand the structural and functional effect of NPCI gene upon mutation.  相似文献   
68.
69.
70.
Niemann-Pick type C (NPC) disease is a multisystem disorder caused primarily by a mutation in the npc1 gene. These studies evaluated the effect of genetic background, deletion of additional genes, and administration of several agents on the age at death in a murine model of this disorder. Such factors as differing strain background or genetic drift within a given background in the npc1(-/-) mouse significantly altered the age at death and the degree of organ disease. Genetic deletion of Siat9 (GM3 synthetase) or Nr1h2 [liver X receptor (LXR)beta] shortened the life of the npc1(-/-) animals. Daily treatment of the npc1(-/-) mice with an LXR agonist or administration of a single dose of cyclodextrin, with or without the neurosteroid allopregnanolone, significantly slowed neurodegeneration and increased the lifespan of these animals. These data illustrate that the age at death of the npc1(-/-) mouse can be significantly influenced by many factors, including differences in strain background, other inactivating gene mutations (Siat9 and lxrbeta), and administration of agents such as LXR agonists and, particularly, cyclodextrin. It is currently not clear which of these effects is nonspecific or which might relate directly to the molecular defect present in the NPC1 syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号