首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   385篇
  免费   71篇
  国内免费   11篇
  2024年   3篇
  2023年   4篇
  2022年   10篇
  2021年   9篇
  2020年   17篇
  2019年   20篇
  2018年   15篇
  2017年   22篇
  2016年   27篇
  2015年   22篇
  2014年   35篇
  2013年   55篇
  2012年   20篇
  2011年   27篇
  2010年   7篇
  2009年   18篇
  2008年   17篇
  2007年   28篇
  2006年   10篇
  2005年   14篇
  2004年   18篇
  2003年   12篇
  2002年   4篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   4篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有467条查询结果,搜索用时 93 毫秒
461.
《Autophagy》2013,9(4):690-691
The fibroblast growth factor (FGF) signaling axis plays important roles in heart development. Yet, the molecular mechanism by which the FGF regulates cardiogenesis is not fully understood. Using genetically engineered mouse and in vitro cultured embryoid body (EB) models, we demonstrate that FGF signaling suppresses premature differentiation of heart progenitor cells, as well as autophagy in outflow tract (OFT) myocardiac cells. The FGF also promotes mesoderm differentiation in embryonic stem cells (ESCs) but inhibits cardiomyocyte differentiation of the mesoderm cells at later stages. Furthermore, inhibition of FGF signaling increases myocardial differentiation and autophagy in both ex vivo cultured embryos and EBs, whereas activation of autophagy promotes myocardial differentiation. Thus, a link between FGF signals preventing premature differentiation of heart progenitor cells and suppression of autophagy has been established. These findings provide the first evidence that autophagy plays a role in heart progenitor differentiation, and suggest a new venue to regulate stem/progenitor cell differentiation.  相似文献   
462.
Without an active, thriving cell population that is well-distributed and stably anchored to the inserted template, exceptional bone regeneration does not occur. With conventional templates, the absence of internal micro-channels results in the lack of cell infiltration, distribution, and inhabitance deep inside the templates. Hence, a highly porous and uniformly interconnected trabecular-bone-like template with micro-channels (biogenic microenvironment template; BMT) has been developed to address these obstacles. The novel BMT was created by innovative concepts (capillary action) and fabricated with a sponge-template coating technique. The BMT consists of several structural components: inter-connected primary-pores (300-400 µm) that mimic pores in trabecular bone, micro-channels (25-70 µm) within each trabecula, and nanopores (100-400 nm) on the surface to allow cells to anchor. Moreover, the BMT has been documented by mechanical test study to have similar mechanical strength properties to those of human trabecular bone (~3.8 MPa)12.The BMT exhibited high absorption, retention, and habitation of cells throughout the bridge-shaped (Π) templates (3 cm height and 4 cm length). The cells that were initially seeded into one end of the templates immediately mobilized to the other end (10 cm distance) by capillary action of the BMT on the cell media. After 4 hr, the cells homogenously occupied the entire BMT and exhibited normal cellular behavior. The capillary action accounted for the infiltration of the cells suspended in the media and the distribution (active migration) throughout the BMT. Having observed these capabilities of the BMT, we project that BMTs will absorb bone marrow cells, growth factors, and nutrients from the periphery under physiological conditions.The BMT may resolve current limitations via rapid infiltration, homogenous distribution and inhabitance of cells in large, volumetric templates to repair massive skeletal defects.  相似文献   
463.
464.
465.
466.
A key common feature of all but three known mammalian genera is the strict seven cervical vertebrae blueprint, suggesting the involvement of strong conserving selection forces during mammalian radiation. This is further supported by reports indicating that children with cervical ribs die before they reach reproductive age. Hypotheses were put up, associating cervical ribs (homeotic transformations) to embryonal cancer (e.g., neuroblastoma) or ascribing the constraint in cervical vertebral count to the development of the mammalian diaphragm. Here, we describe a spontaneous mutation c.196A > G in the Bos taurus T gene (also known as brachyury) associated with a cervical vertebral homeotic transformation that violates the fundamental mammalian cervical blueprint, but does not preclude reproduction of the affected individual. Genome-wide mapping, haplotype tracking within a large pedigree, resequencing of target genome regions, and bioinformatic analyses unambiguously confirmed the mutant c.196G allele as causal for this previously unknown defect termed vertebral and spinal dysplasia (VSD) by providing evidence for the mutation event. The nonsynonymous VSD mutation is located within the highly conserved T box of the T gene, which plays a fundamental role in eumetazoan body organization and vertebral development. To our knowledge, VSD is the first unequivocally approved spontaneous mutation decreasing cervical vertebrae number in a large mammal. The spontaneous VSD mutation in the bovine T gene is the first in vivo evidence for the hypothesis that the T protein is directly involved in the maintenance of the mammalian seven-cervical vertebra blueprint. It therefore furthers our knowledge of the T-protein function and early mammalian notochord development.  相似文献   
467.
Heat Shock Proteins (HSPs) represent a variety of protein families that are induced by stressors such as heat and toxicants, and the induction of HSPs in the organogenesis stage rodent embryo is well established. It has been proposed that thermotolerance and chemotolerance result from expression of the HSPs. However, whether these proteins function to prevent dysmorphogenesis and which family members serve this function are unknown. Therefore, we evaluated the specific ability of stress-inducible Hsp70-1 and Hsp70-3 to prevent arsenite-induced dysmorphology in the cultured mouse embryo using gain- and loss-of-function models. Loss of HSP function was accomplished by injecting antisense oligonucleotides directed against hsp70-1 and hsp 70-3 mRNAs into the amniotic cavity of cultured Day 9 mouse embryos. Suppression of hsp70-1 and hsp70-3 expression resulted in an up to six-fold increase in the incidence of arsenite-induced neural tube defects. Gain of HSP function was accomplished by microinjecting a transgene with a constitutive promotor driving expression of the hsp70-1 coding region, and resulted in a decreased incidence of arsenite-induced neural tube defects. These results indicate that Hsp70-1 and Hsp70-3 are both necessary and sufficient for preventing arsenite-induced dysmorphology in early-somite staged mouse embryos. Mol. Reprod. Dev. 59:285-293, 2001.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号