首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
  2016年   3篇
  2014年   3篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  1997年   1篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有34条查询结果,搜索用时 78 毫秒
21.
We previously determined that Notch2, and not Notch1, was required for forming proximal nephron segments. The dominance of Notch2 may be conserved in humans, since Notch2 mutations occur in Alagille syndrome (ALGS) 2 patients, which includes renal complications. To test whether mutations in Notch1 could increase the severity of renal complications in ALGS, we inactivated conditional Notch1 and Notch2 alleles in mice using a Six2-GFP::Cre. This BAC transgene is expressed mosaically in renal epithelial progenitors but uniformly in cells exiting the progenitor pool to undergo mesenchymal-to-epithelial transition. Although delaying Notch2 inactivation had a marginal effect on nephron numbers, it created a sensitized background in which the inactivation of Notch1 severely compromised nephron formation, function, and survival. These and additional observations indicate that Notch1 in concert with Notch2 contributes to the morphogenesis of renal vesicles into S-shaped bodies in a RBP-J-dependent manner. A significant implication is that elevating Notch1 activity could improve renal functions in ALGS2 patients. As proof of principle, we determined that conditional inactivation of Mint, an inhibitor of Notch-RBP-J interaction, resulted in a moderate rescue of Notch2 null kidneys, implying that temporal blockage of Notch signaling inhibitors downstream of receptor activation may have therapeutic benefits for ALGS patients.  相似文献   
22.
The development of most, if not all, tubular organs is dependent on signaling between epithelial and stromal progenitor populations. Most often, these lineages derive from different germ layers that are specified during gastrulation, well in advance of organ condensation. Thus, one of the first stages of organogenesis is the integration of distinct progenitor populations into a single embryonic rudiment. In contrast, the stromal and epithelial lineages controlling renal development are both believed to derive from the intermediate mesoderm and to be specified as the kidney develops. In this study we directly analyzed the lineage of renal epithelia and stroma in the developing chick embryo using two independent fate mapping techniques. Results of these experiments confirm the hypothesis that nephron epithelia derive from the intermediate mesoderm. Most importantly, we discovered that large populations of renal stroma originate in the paraxial mesoderm. Collectively, these studies suggest that the signals that subdivide mesoderm into intermediate and paraxial domains may play a role in specifying nephron epithelia and a renal stromal lineage. In addition, these fate mapping data indicate that renal development, like the development of all other tubular organs, is dependent on the integration of progenitors from different embryonic tissues into a single rudiment.  相似文献   
23.
Zebrafish are an attractive model for studying the earliest cellular defects occurring during renal cyst formation because its kidney (the pronephros) is simple and genes that cause cystic kidney diseases (CKD) in humans, cause pronephric dilations in zebrafish. By comparing phenotypes in three different mutants, locke, swt and kurly, we find that dilations occur prior to 48 hpf in the medial tubules, a location similar to where cysts form in some mammalian diseases. We demonstrate that the first observable phenotypes associated with dilation include cilia motility and luminal remodeling defects. Importantly, we show that some phenotypes common to human CKD, such as an increased number of cells, are secondary consequences of dilation. Despite having differences in cilia motility, locke, swt and kurly share similar cystic phenotypes, suggesting that they function in a common pathway. To begin to understand the molecular mechanisms involved in cyst formation, we have cloned the swt mutation and find that it encodes a novel leucine rich repeat containing protein (LRRC50), which is thought to function in correct dynein assembly in cilia. Finally, we show that knock-down of polycystic kidney disease 2 (pkd2) specifically causes glomerular cysts and does not affect cilia motility, suggesting multiple mechanisms exist for cyst formation.  相似文献   
24.
The protein ARVCF is a member of the p120 subfamily of armadillo proteins whose members have been described to occur in junction-bound and non-junction-bound forms. Studies on ARVCF were constrained because the endogenous protein was difficult to detect with the available reagents. We have generated novel monoclonal and polyclonal antibodies usable for biochemical and localization studies. By systematic immunohistochemical analysis of various tissues protein ARVCF is prominently detected in mouse, bovine and human kidney. Using antibodies against specific markers of nephron segments protein ARVCF is localized in proximal tubules according to double label immunofluorescence. Besides its occurrence in proximal tubules of adult kidney and in renal cell carcinoma derived from proximal tubules ARVCF is also detected in maturing nephrons in early mouse developmental stages such as, for example, 15 days of gestation (E15). Immunoblotting of total extracts of cultured cells of renal origin showed that ARVCF is detected in all human and murine cultured cells analyzed. Upon immunolocalization ARVCF is mostly detected in the cytoplasm occurring in a fine granular form. This prominent cytoplasmic localization of ARVCF in cultured cells and its occurrence in proximal tubules implies an involvement of ARVCF in specific functional processes of proximal tubules of kidney. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
25.
Summary The cells of the kidney proximal segment of the migrating arctic lamprey, Lampetra japonica, contain particles of the same size, electron-density and intracellular location as particles identified by others as very low-density lipoproteins (VLDL) in the liver and intestine of teleost fishes and lampreys. These particles are synthesized within the cisternae of the smooth endoplasmic reticulum and elements of the Golgi complex. They are transferred to the lateral intercellular space and lamina propria by way of the Golgi vesicles and an intracellular channel system. Some particles are discharged into the lumina of the sinusoidal capillaries of the lamina propria. Although the physiological role of lipoprotein secretion in the renal proximal segment cells is unknown, the present observations provide morphological evidence that the kidney of the arctic lampreys synthesizes lipoproteins and releases them into the circulation at the time when they are undertaking their anadromous migration.  相似文献   
26.
The existence of a local renin angiotensin system (RAS) of the kidney has been established. Angiotensinogen (AGT), renin, angiotensin-converting enzyme (ACE), angiotensin receptors, and high concentrations of luminal angiotensin II have been found in the proximal tubule. Although functional data have documented the relevance of a local RAS, the dualism between biosynthesis and endocytotic uptake of its components and their cellular processing has been incompletely understood. To resolve this, we have selectively analyzed their distribution, endocytosis, transcytosis, and biosynthesis in the proximal tubule. The presence of immunoreactive AGT, restricted to the early proximal tubule, was due to its retrieval from the ultrafiltrate and storage in endosomal and lysosomal compartments. Cellular uptake was demonstrated by autoradiography of radiolabeled AGT and depended on intact endocytosis. AGT was identified as a ligand of the multiple ligand-binding repeats of megalin. AGT biosynthesis was restricted to the proximal straight tubule, revealing substantial AGT mRNA expression. Transgenic AGT overexpression under the control of an endogenous promoter was also restricted to the late proximal tubule. Proximal handling of renin largely followed the patterns of AGT, whereas its local biosynthesis was not significant. Transcytotic transport of AGT in a proximal cell line revealed a 5% recovery rate after 1 h. ACE was expressed along late proximal brush-border membrane, whereas ACE2 was present along the entire segment. Surface expression of ACE and ACE2 differed as a function of endocytosis. Our data on the localization and cellular processing of RAS components provide new aspects of the functional concept of a “self-contained” renal RAS.  相似文献   
27.
目的:探讨经皮肾镜碎石术肾盂灌注冲洗压对肾脏结构和功能的影响。方法:建立20头活体猪高压肾盂冲洗模型,建立24F肾造瘘通道,分别在0mmHg(作自身对照,只造瘘不灌注)、150mmHg、200mmHg、250mmHg、300mmHg压力下各冲洗30分钟。术中取肾组织送病理检查,监测肾单位光镜和电镜下的形态学改变;术后5天留取尿标本,应用免疫比浊测定法(ITM)检测尿微量白蛋白(ALB)和β2-微球蛋白(β2-MG);并于术后第5天再次取肾组织行病理检查观察肾单位的形态学改变。结果:所有灌注组术后都出现尿蛋白的增高,术后第1天和术前相比,都有显著差异(P〈0.01)。形态学观察:当肾盂灌注冲洗压在150-200mmHg时,光镜下观察见肾小囊腔轻度扩张,压力超过250mmHg,肾小囊腔见红细胞和蛋白渗出物,肾小管扩张。电镜下见肾近曲小管上皮细胞内空泡形成,微绒毛排列杂乱、稀疏、部分微绒毛脱落。结论:肾盂灌注冲洗安全压不应超过200mmHg。  相似文献   
28.
Summary By the use of thin sections and freeze-fracture replicas the glomerular and tubular structures of the kidney of the frog (Rana esculenta) were studied with special reference to intercellular junctions.In the glomerulus the filtration barrier is of very variable thickness, and frequent tight and gap junctional contacts occur between podocyte processes.Although structurally less elaborate, the proximal tubule resembles its mammalian counterpart. In the initial part the tight junctions are relatively shallow but become very broad in the mid and distal portions of the proximal tubule. The proximal tubular cells are extensively linked by gap junctions. In some animals the shapes of the cells in the proximal and distal portions of the proximal tubule were markedly different.The distal tubule consists of two segments which differ mainly in the pattern of interdigitations and the structure of the zonulae occludentes. Similarities with the tight junctional morphology of the mammalian distal tubule are striking. In the first part of the distal tubule (diluting segment) a narrow band of parallel tight junctions is found closely resembling that found in the mammalian straight distal tubule; in the more distal part of the distal tubule, however, a broad band of anastomosing tight junctional strands exists, like the zonula occludens of the mammalian convoluted distal tubule.The connecting tubule displays cellular dimorphism: its wall contains a mixture of light and dark (flask) cells. The luminal and basolateral membranes of the flask cells are covered with numerous rod-shaped particles. The tight junctions of the connecting tubule are broad and increase in depth and number of strands along its length; they are typical of a very tight epithelium.In spite of several dissimilarities with phylogenetically younger kidneys our findings suggest that many structural principles of the mammalian kidney are also represented in the kidneys of amphibians. The structural-functional relationships are discussed.  相似文献   
29.
Kidney disease is a devastating condition that affects millions of people worldwide, and its prevalence predicted to significantly increase. The kidney is complex organ encompassing many diverse cell type organized in a elaborate tissue architecture, makin regeneration a challenging feat. In recent years, there ha been a surge in the field of stem cell research to develo regenerative therapies for various organ systems. Here we review some recent progressions in characterizing th role of renal progenitors in development, regeneration and kidney disease in mammals. We also discuss how the zebrafish provides a unique experimental anima model that can provide a greater molecular and genet understanding of renal progenitors, which may contribut to the development of potential regenerative therapies fo human renal afflictions.  相似文献   
30.
The gene encoding bone morphogenetic protein-7(BMP7) is expressed in the developing kidney in embryos and also in the mature organ in adults. During kidney development, expression of BMP7 is essential to determine the final number of nephrons in and proper size of the organ. The secreted BMP7 acts on the nephron progenitor cells to exert its dual functions: To maintain and expand the progenitor population and to provide them with competence to respond to differentiation cues, each relying on distinct signaling pathways. Intriguingly, in the adult organ, BMP7 has been implicated in protection against and regeneration from injury. Exogenous administration of recombinant BMP7 to animal models of kidney diseases has shown promising effects in counteracting inflammation, apoptosis and fibrosis evoked upon injury. Although the expression pattern of BMP7 has been well described, the mechanisms by which it is regulated have remained elusive and the processes by which the secretion sites of BMP7 impinge upon its functions in kidney development and diseases have not yet been assessed. Understanding the regulatory mechanisms will pave the way towards gaining better insight into the roles of BMP7, and to achieving desired control of the gene expression as a therapeutic strategy for kidney diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号