首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   7篇
  国内免费   10篇
  2019年   1篇
  2015年   6篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2010年   3篇
  2009年   9篇
  2008年   14篇
  2007年   9篇
  2006年   10篇
  2005年   6篇
  2004年   7篇
  2003年   3篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1973年   1篇
排序方式: 共有91条查询结果,搜索用时 765 毫秒
81.
Arizona fescue (Festuca arizonica) often harbours asymptomatic, asexual endophytic fungi from the genus Neotyphodium. In agronomic grasses, Neotyphodium endophytes are often credited with a wide range of mutualistic benefits to its host many of which are related to fungal production of alkaloids for herbivore deterrence. Neotyphodium in the native grass Arizona fescue, however, usually produces alkaloids at levels too low to deter herbivores, and in general, does not behave mutualistically. This study uses microsatellite markers to examine rates of gene flow among four Arizona populations of Neotyphodium. Haplotypic diversity was generally low; only one population contained more than two haplotypes. Haplotypes carrying multiple loci for some or all of the microsatellite loci were also found, indicating a vegetative hybridization event between Neotyphodium and the grass choke pathogen from the genus Epichloë. Gene flow between Neotyphodium populations is very low, and likely much lower than the pollen mediated gene flow of its host. These differing rates of gene flow are predicted to create trait mismatching between endophyte and host and may explain the low, or lack of, alkaloid production by Neotyphodium in Arizona fescue and other native grass species.  相似文献   
82.
83.
Neotyphodium coenophialum (Glenn, Bacon, Price & Hanlin) (Ascomycota: Clavicipitaceae) is an endophytic fungus that lives symbiotically within grasses and produces alkaloids that can help protect its hosts from some insect pests. We used laboratory‐based experiments to investigate whether fungal genotype influences an herbivore and its parasitoid. We tested whether variation in novel isolates, plus a control lacking fungal infection, affected preference by fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae: Amphipyrini), and growth and survival of Euplectrus comstockii Howard (Hymenoptera: Eulophidae: Euplectrini), a parasitoid of fall armyworm. Caterpillars preferred leaf blades in choice experiments from uninfected tall fescue [Lolium arundinaceum (Schreb.) Darbysh., cultivar Jesup (Poaceae)] and tended to avoid blades from plants containing fungal isolates AR502, AR542, or the most common strain from pastures in Georgia, USA, in tall fescue. However, caterpillars fed as much on leaf blades from plants containing isolate AR502 as from those lacking infection. Parasitoid pupal mass was not influenced by fungal isolate, yet fungal isolate did influence parasitoid survival. Survival was higher than expected for parasitoids reared from hosts fed plants lacking fungal infection, but was lower than expected for those reared from hosts fed plants infected with the common strain or AR542 isolates. In contrast, parasitoids reared from hosts fed plants infected with isolate AR502 did not experience higher mortality than expected by chance. Our results show that N. coenophialum can modify bottom‐up trophic cascades through direct effects on herbivores, as well as indirect effects on a natural enemy of the herbivores and that the fungus may influence the tritrophic interaction in ways that counterbalance herbivore protection provided by the symbiont. Our work also shows that these effects are influenced by fungal genotype. As attempts are made to produce forage cultivars with strains of fungal endophyte that lack negative influences on livestock, it will be prudent for investigators to assess the multi‐trophic effects of these novel associations within agroecosystems.  相似文献   
84.
Neotyphodium endophytes in introduced agronomic grasses are well known to increase resistance to herbivores, but little is known of interactions between Neotyphodium endophytes and herbivores in native grass populations. We investigated whether endophytes mediate plant-herbivore interactions in a native grass species, Festuca arizonica in the southwestern United States, in two ways. First, to test the prediction that the presence and frequency of endophyte-infected (E+) plants should increase with increasing herbivory, we determined endophyte frequencies over a 4-year period in six natural Arizona fescue populations. We compared Neotyphodium frequency among plants growing inside and outside long-term vertebrate grazing exclosures. Second, we experimentally tested the effects of Neotyphodium infection, plant clone, and soil nutrients on plant resistance to the native grasshopper Xanthippus corallipes. Contrary to predictions based upon the hypothesis that endophytes increase herbivore resistance, levels of infection did not increase in plants subjected to grazing outside of exclosures relative to ungrazed plants within exclosures. Instead, endophyte frequencies tended to be greater inside the exclosures, where long-term vertebrate grazing was reduced. The grasshopper bioassay experiment corroborated these long-term patterns. Survival of grasshoppers did not differ between infected (E+) and uninfected (E–) plants. Instead, mean relative growth rate of grasshoppers was higher on E+ grasses than on E– ones. Growth performance of newly hatched grasshopper nymphs varied among host plant clones, although two of six clones accounted for most of this variation. Our results suggest that Neotyphodium-grass-herbivore interactions may be much more variable in natural communities than predicted by studies of agronomically important Neotyphodium-grass associations, and herbivory is not always the driving selective force in endophyte-grass ecology and evolution. Thus, alternative hypotheses are necessary to explain the wide distribution and variable frequencies of endophytes in natural plant populations. Received: 15 February 1999 / Accepted: 19 July 1999  相似文献   
85.
Abstract The effects of tropical solar radiation on the motility of the cyanobacteria Anabaena variabilis, Oscillatoria tenuis and two strains of Phormidium uncinatum were studied in Ghana (4.30°N). The percentages of motile filaments were drastically reduced by unfiltered solar radiation. Covering the organisms with various long pass or band pass filters (WG320, GG395 or UG5) revealed that the UV-B, UV-A and visible light components of the solar spectrum were all effective in impairing motility in these organisms. Only partial recovery was observed and only after short exposure times.  相似文献   
86.
87.
Abstract Neotyphodium frequently occurs as an endophyte in grasses. Evidence shows enhanced fitness of endophyte infected grasses relative to non‐infected ones. Some studies of seed germination show endophyte enhancement of plant fitness in various environments, but inconsistent results indicate that further studies are needed. So far, experiments have failed to separate the confounded effects of population origin and seed management. For this reason, we evaluated the effects of endophyte infection on seed dormancy and germination in Lolium multiflorum using an experimental design controlling these factors. Depending on the year of seed production, endophyte infection modified seed response to light quality, affecting predominantly seed dormancy levels. Nevertheless, the endophyte did not affect base temperature or thermal time of germination. We concluded that endophytes were not a strong influence on germination behaviour. We speculate from our results that the presence of the endophyte changes germination by an indirect effect, in extending growth of the maternal plant during seed development and ripening. The direct effect of hyphae in the seed on seed behaviour was disregarded, because the difference between infected and non‐infected seed varied within the year of seed production. Future experiments should focus on effects of the endophyte on the canopy of parent plants during seed production and ripening, and, hence, on subsequent dormancy and germination of the seeds.  相似文献   
88.
Presence of Neotyphodium-like endophytes in European grasses   总被引:1,自引:0,他引:1  
In order to improve knowledge of Neotyphodium‐likc fungi in European grasses, microscopic detection of endophytic mycelium was achieved in living grasses and in seeds. Samples of grasses were gathered near permanent pastures or along paths in France (93 samples, 13 genera, 22 species). Typical convoluted mycelium was found inside leaf sheaths of four genera, especially in Festuca and Lolium spp. The results suggest that endophytes were present most often in the southern regions where plants may suffer from summer drought. Endophytes were looked for in 489 seed samples (63 genera, 237 species) received from 24 European botanical gardens. Neotyphodium was found in seeds of only six genera (22 species), especially in Festuca (15 species) and Lolium (three species). No endophytic mycelium was found in the other 215 species, although other work had demonstrated the presence of the fungus in 39 of the species analysed. Neotyphodium‐likc mycelium was detected for the first time in Festuca juncifolia, F. trachyphylla, F. vaginata, F. pseudodalmatica, F. rupicaprina, F. arenaria, Vulpia ciliata and Micropyrum tenellum. Further studies are needed for the correct identification of the Neotyphodium species observed.  相似文献   
89.
90.
Abstract The effects of solar irradiation and artificial UV irradiation on several cyanobacteria ( Anabaena variabilis and two strains of Phormidium uncinatum ) have been studied. Both types of radiation affect the percentage of motile filaments and impair the linear velocity of the organisms. Long term exposure to UV radiation bleaches the photosynthetic pigments as determined by absorption difference spectra. Fluorescence excitation and emission spectra indicate that under ultraviolet radiation the energy transfer from the accessory pigments to chlorophyll is affected. Furthermore the structural integrity of the phycobilisomes seems to be impaired by continuous radiation and the photoreceptor pigments seem to be destroyed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号