首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   589篇
  免费   86篇
  国内免费   18篇
  2024年   1篇
  2023年   22篇
  2022年   14篇
  2021年   37篇
  2020年   37篇
  2019年   55篇
  2018年   52篇
  2017年   27篇
  2016年   24篇
  2015年   32篇
  2014年   55篇
  2013年   69篇
  2012年   22篇
  2011年   29篇
  2010年   17篇
  2009年   14篇
  2008年   11篇
  2007年   16篇
  2006年   10篇
  2005年   11篇
  2004年   10篇
  2003年   11篇
  2002年   10篇
  2001年   6篇
  2000年   10篇
  1999年   11篇
  1998年   10篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   9篇
  1993年   7篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有693条查询结果,搜索用时 15 毫秒
71.
肉毒毒素是肉毒梭状芽胞杆菌生长繁殖过程中产生的一种细菌外毒素。它可以通过抑制相关神经递质的释放而抑制神经的生理作用,目前临床适应症涉及神经内科、整形外科、康复科、泌尿科等多领域。最新研究发现,肉毒毒素作为毒蕈碱受体拮抗剂可抑制迷走神经释放乙酰胆碱,从而抑制胃癌的发生与发展。同时发现肉毒毒素可通过阻断去甲肾上腺素等神经递质的释放引起神经性的血管舒张,从而打开肿瘤神经血管网来改善肿瘤的放射和化学治疗的疗效。现就其在肿瘤治疗及其辅助治疗相关领域的研究现状进行了综述。  相似文献   
72.
多数抗肿瘤药物的水溶性差、系统毒性和多药耐药性已成为其临床应用所面临的主要问题,而利用聚乙二醇材料构建前药或合适的 递药系统来克服这些问题,备受广大药学研究者的关注。以具有良好抗肿瘤活性和分子荧光特性的阿霉素为例,综述聚乙二醇在化疗药物 前药和递药系统的构建及制备等成药性研究中的应用,为高效低毒抗肿瘤药品的进一步研究与开发提供参考。  相似文献   
73.
Four 5-carbon-linked trioxane dimer orthoesters (6a-6d) have been prepared in 4 or 5 chemical steps from the natural trioxane artemisinin (1). When administered orally to malaria-infected mice using a single dose of only 6 mg/kg body weight along with 18 mg/kg of mefloquine hydrochloride, trioxane dimer orthoester sulfone 6d completely and safely cured the mice; after 30 days, the cured mice showed no detectable parasitemia, gained at least as much weight as the control mice (no infection), and behaved normally.  相似文献   
74.
双歧杆菌预防化疗后肠道菌群失调症的临床研究   总被引:1,自引:0,他引:1  
探讨双歧杆菌对乳腺癌患者由于化疗导致肠道菌群失调的预防作用。2010年在我科住院的98例乳腺癌患者,在第一周期化疗后有48例出现肠道菌群失调,发生率为48.9%;在3周后的第二周期化疗前1d予患者口服双歧杆菌(双歧杆菌乳杆菌三联活菌片,一次4片,一日2次),直至化疗后2周,肠道菌群失调例数减少到32例,发生率为32.7%。在前后两周期化疗期间监测血常规,粪便菌群失调检查。治疗周期出现菌群失调比例32.7%明显低于对照周期48.9%(P〈0.05),双歧杆菌对乳腺癌患者化疗导致胃肠菌群失调有预防作用。  相似文献   
75.
Eum KH  Lee M 《Molecules and cells》2011,31(3):231-238
The effectiveness of an apoptosis-targeting therapy may be limited in tumor cells with defects in apoptosis. Recently, considerable attention in the field of cancer therapy has been focused on the mammalian rapamycin target (mTOR), inhibition of which results in autophagic cell death. In our study using multidrug-resistant v-Ha-rastransformed NIH3T3 (Ras-NIH 3T3/Mdr) cells, we demonstrated that rapamycin-induced cell death may result from 2 different mechanisms. At high rapamycin concentrations (≥ 100 nM), cell death may occur via an autophagy-dependent pathway, whereas at lower concentrations (≤ 10 nM), cell death may occur after G1-phase cell cycle arrest. This effect was accompanied by upregulation of p21Cip1 and p27Kip1 expression via an autophagy-independent pathway. We also tested whether inhibition of mTOR with low concentrations of rapamycin and ectopic Beclin-1 expression would further sensitize multidrug resistance (MDR)-positive cancer cells by upregulating autophagy. Rapamycin at low concentrations might be insufficient to initiate autophagosome formation in autophagy but Beclin-1 overexpression triggered additional processes downstream of mTOR during G1 cell cycle arrest by rapamycin. Our findings suggest that these combination strategies targeting autophagic cell death may yield significant benefits for cancer patients, because lowering rapamycin concentration for cancer treatment minimizes its side effects in patients undergoing chemotherapy.  相似文献   
76.
Increased expression of DNA repair genes contributes to the extreme resistance shown by melanoma to conventional DNA-damaging chemotherapeutics. One such chemotherapeutic effective against a range of other cancers, but not melanoma, is cisplatin. The DNA repair protein, ERCC1, is needed to remove cisplatin-induced DNA damage. We have shown that ERCC1 is essential for melanoma growth and resistance to cisplatin in a mouse xenograft model. Untreated xenografts of our transformed Ercc1-proficient melanocyte cell line grew very rapidly as malignant melanoma. Cisplatin treatment caused initial shrinkage of xenografts, but cisplatin-resistant regrowth soon followed. Cells reisolated into culture had twofold elevated levels of ERCC1 compared to both input cells and cells reisolated from untreated xenografts. An isogenic Ercc1-deficient derivative grew equally well in vitro as the Ercc1-proficient melanocyte cell line. However, in xenografts, the Ercc1-deficient melanomas were much slower to establish and were completely cured by just two cisplatin treatments.  相似文献   
77.
Antibody-targeted chemotherapy with immunoconjugates of calicheamicin is a clinically validated strategy in cancer therapy. This study describes the selection of a murine anti-CD22 mAb, m5/44, as a targeting agent, its conjugation to a derivative of calicheamicin (CalichDM) via either acid-labile or acid-stable linkers, the antitumor activity of CalichDM conjugated to m5/44, and its subsequent humanization by CDR grafting. Murine IgG1 mAb m5/44 was selected based on its subnanomolar affinity for CD22 and ability to be internalized into B cells. CalichDM conjugated to m5/44 caused potent growth inhibition of CD22+ human B-cell lymphomas (BCLs) in vitro. The conjugate of m5/44 with an acid-labile linker was more potent than an acid-stable conjugate, a nonbinding conjugate with a similar acid-labile linker, or unconjugated CalichDMH in inhibiting BCL growth. CalichDM conjugated to m5/44 caused regression of established BCL xenografts in nude mice. In contrast, both unconjugated m5/44 and a nonbinding conjugate were ineffective against these xenografts. Based on the potent antitumor activity of m5/44-CalichDM conjugates, m5/44 was humanized by CDR grafting to create g5/44, an IgG4 anti-CD22 antibody. Both m5/44 and g5/44 bound CD22 with subnanomolar affinity. Competitive blocking with previously characterized murine anti-CD22 mAbs suggested that g5/44 recognizes epitope A located within the first N-terminal Ig-like domain of human CD22. Antitumor efficacy of CalichDM conjugated to g5/44 against BCL xenografts was more potent than its murine counterpart. Based on these results, a calicheamicin conjugate of g5/44, CMC-544, was selected for further development as a targeted chemotherapeutic agent for the treatment of B-cell malignancies.Abbreviations AcBut 4-(4-Acetylphenoxy) butanoic acid - AcPAc (3-Acetylphenyl) acetic acid - ATC Antibody-targeted chemotherapy - BCL B-cell lymphoma - CalichDM N-Acetyl--calicheamicin dimethyl disulfide derivative(s) - CalichDMA CalichDM acid - CalichDMH CalichDM hydrazide - CDR Complementarity determining region - NHL Non-Hodgkins lymphoma - PBMC Peripheral blood mononuclear cell - TAA Tumor-associated antigen  相似文献   
78.
79.
The aim of this study was the development of a veterinary dosage form constituted by injectable biodegradable microspheres designed for the subcutaneous release of carboplatin, a chemotherapeutic drug. Poly(D,L-lactide) (PDLLA) microspheres were prepared by an emulsification/spray-drying method, using the drug-to-polymer weight ratios 1∶9 and 1∶5; blank microspheres (1% w/v) were prepared as a comparison. Microparticles were characterized in terms of morphology, encapsulation efficiency, and in vitro drug release behavior. In vivo tests were conducted on rats by subcutaneous injection of microsphere aqueous suspensions. Levels of carboplatin were evaluated both in the skin and in serum. The microparticles obtained had a spherical shape; particle size ranged from 5 to 7 μm, dependent on drug loading. Microspheres were able to control the in vitro release of the drug: approximately 90% to 100% of the carboplatin was released over 30 days. In vivo results showed that the microspheres were able to release high drug amounts locally, and sustained serum levels of drug were also achieved. Based on these results, carboplatin-loaded PDLLA microspheres may be useful for local delivery of the antineoplastic drug to the tumor, avoiding tumor recurrence in small animals, and may decrease the formation of distant metastases. Published: September 20, 2005  相似文献   
80.
Amidox, a new polyhydroxy-substituted benzoic acid derivative, is a potent inhibitor of the enzyme ribonucleotide reductase (RR), which catalyses the de novo synthesis of DNA. RR is considered to be an excellent target for anti cancer chemotherapy. We investigated the biochemical and antineoplastic effects of amidox as a single agent and in combination with Ara-C in human HL-60 promyelocytic leukemia cells. Amidox inhibited the growth of HL-60 cells in a growth inhibition assay with an IC50 of 25 microM. In a soft agar colony forming assay, amidox yielded a 50% inhibition of colony formation at 13 microM. We also investigated the effects of amidox treatment on the formation of deoxynucleosidetriphosphates. Amidox (50 and 75 microM for 24 hours) could significantly decrease intracellular concentrations of dCTP, dATP and dGTP pools, whereas dTTP levels increased. We then tested the combination effects of amidox with Ara-C; this combination yielded additive cytotoxic effects both in growth inhibition and in soft agar colony formation assays. This effect was due to the increased formation of Ara-CTP, the active metabolite of Ara-C, after preincubation with amidox. Preincubation of HL-60 cells with 75 and 100 microM amidox for 24 hours caused an increase in the intracellular Ara-CTP concentrations by 576% and 1143%, respectively. Therefore amidox might offer an additional option for the treatment of leukemia and thus be further investigated in in vivo studies as a single agent and in combination with Ara-C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号