首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72018篇
  免费   5015篇
  国内免费   2657篇
  2023年   1143篇
  2022年   1062篇
  2021年   2380篇
  2020年   2364篇
  2019年   3277篇
  2018年   2850篇
  2017年   2038篇
  2016年   2016篇
  2015年   2521篇
  2014年   4774篇
  2013年   5938篇
  2012年   3672篇
  2011年   4737篇
  2010年   3591篇
  2009年   3890篇
  2008年   3957篇
  2007年   3987篇
  2006年   3539篇
  2005年   3073篇
  2004年   2716篇
  2003年   2160篇
  2002年   1940篇
  2001年   1238篇
  2000年   963篇
  1999年   980篇
  1998年   988篇
  1997年   768篇
  1996年   682篇
  1995年   615篇
  1994年   567篇
  1993年   433篇
  1992年   432篇
  1991年   356篇
  1990年   293篇
  1989年   241篇
  1988年   211篇
  1987年   184篇
  1986年   161篇
  1985年   272篇
  1984年   456篇
  1983年   334篇
  1982年   349篇
  1981年   264篇
  1980年   202篇
  1979年   196篇
  1978年   172篇
  1977年   143篇
  1976年   118篇
  1975年   108篇
  1973年   104篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Prion colonization of secondary lymphoid organs (SLOs) is a critical step preceding neuroinvasion in prion pathogenesis. Follicular dendritic cells (FDCs), which depend on both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance, are thought to be the primary sites of prion accumulation in SLOs. However, prion titers in RML-infected TNFR1−/− lymph nodes and rates of neuroinvasion in TNFR1−/− mice remain high despite the absence of mature FDCs. Recently, we discovered that TNFR1-independent prion accumulation in lymph nodes relies on LTβR signaling. Loss of LTβR signaling in TNFR1−/− lymph nodes coincided with the de-differentiation of high endothelial venules (HEVs)—the primary sites of lymphocyte entry into lymph nodes. These findings suggest that HEVs are the sites through which prions initially invade lymph nodes from the bloodstream. Identification of HEVs as entry portals for prions clarifies a number of previous observations concerning peripheral prion pathogenesis. However, a number of questions still remain: What is the mechanism by which prions are taken up by HEVs? Which cells are responsible for delivering prions to lymph nodes? Are HEVs the main entry site for prions into lymph nodes or do alternative routes also exist? These questions and others are considered in this article.  相似文献   
142.
143.
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+-ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+-ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+-ATPase, which is required for rice P use.  相似文献   
144.
The chiral isomers of the two potent simplified RTX-based vanilloids, compounds 2 and 3, were synthesized employing highly enantioselective PTC alkylation and evaluated as hTRPV1 ligands. The analysis indicated that the R-isomer was the eutomer in binding affinity and functional activity. The agonism of compound 2R was comparable to that of RTX. Docking analysis of the chiral isomers of 3 suggested the basis for its stereospecific activity and the binding mode of 3R.  相似文献   
145.
146.
The pannexin family of channel-forming proteins is composed of 3 distinct but related members called Panx1, Panx2, and Panx3. Pannexins have been implicated in many physiological processes as well as pathological conditions, primarily through their function as ATP release channels. However, it is currently unclear if all pannexins are subject to similar or different post-translational modifications as most studies have focused primarily on Panx1. Using in vitro biochemical assays performed on ectopically expressed pannexins in HEK-293T cells, we confirmed that all 3 pannexins are N-glycosylated to different degrees, but they are not modified by sialylation or O-linked glycosylation in a manner that changes their apparent molecular weight. Using cell-free caspase assays, we also discovered that similar to Panx1, the C-terminus of Panx2 is a substrate for caspase cleavage. Panx3, on the other hand, is not subject to caspase digestion but an in vitro biotin switch assay revealed that it was S-nitrosylated by nitric oxide donors. Taken together, our findings uncover novel and diverse pannexin post-translational modifications suggesting that they may be differentially regulated for distinct or overlapping cellular and physiological functions.  相似文献   
147.
急性脑梗死约占全部脑卒中的70%,病死率和致残率高,且极易复发。但目前针对急性脑梗死在时间窗内溶栓、抗凝等治疗手段不能从根本上切实有效地修复受损脑组织,且伴有出血等风险。寻找脑梗死形成发展的原因并予以治疗迫在眉睫。酸中毒是引起缺血性脑损伤的重要机制。大量实验研究表明,酸中毒能加重神经元的缺血性损伤,且其梗死面积与酸中毒的程度直接相关。但缺血产生的酸中毒如何引起神经元损伤的确切机制尚不明确。最近研究发现酸中毒能激活一种在中枢及周围神经中广泛存在的膜通道,即酸敏感离子通道,它对Ca2+通透,能引起细胞内Ca2+超载,同时能激活胞内酶引起细胞内蛋白质、脂类及核酸的降解,加重缺血后脑损伤。本文就酸敏感离子通道1a与脑梗死做一综述。  相似文献   
148.
Band 3 protein extracted from human erythrocyte membranes by Triton X-100 was recombined with the major classes of phospholipid occurring in the erythrocyte membrane. The resulting vesicle systems were characterized with respect to recoveries, phospholipid composition, protein content and vesicle size as well as capacity and activation energy of sulfate transport. Transport was classified into band-3-specific fluxes and unspecific permeability by inhibitors. Transport numbers (sulfate ions per band 3 per minute) served as a measure of functional recovery after reconstitution. The transport properties of band 3 proved to be insensitive to replacement of phosphatidylcholine by phosphatidylethanolamine, while sphingomyelin and phosphatidylserine gradually inactivated band-3-specific anion transport when present at mole fractions exceeding 30 mol%. The activation energy of transport remained unaltered in spite of the decrease in transport numbers. The results, which are discussed in terms of requirements of band 3 protein function with respect to the fluidity and surface charge of its lipid environment, provide a new piece of evidence that the transport function of band 3 protein depends on the properties of its lipid environment just as the catalytic properties of some other membrane enzymes. The well-established species differences in anion transport (Gruber, W. and Deuticke, B. (1973) J. Membrane Biol. 13, 19–36) may to some extent reflect this lipid dependence.  相似文献   
149.
150.
The pleiotropic effects of the insulin-sensitizing adipokine adiponectin are mediated, at least in part, by two seven-transmembrane domain receptors AdipoR1 and AdipoR2. Recent reports indicate a role for AdipoR-binding proteins, namely APPL1, RACK1 and CK2β, in proximal signal transduction events. Here we demonstrate that endoplasmic reticulum protein 46 (ERp46) interacts specifically with AdipoR1 and provide evidence that ERp46 modulates adiponectin signalling. Co-immunoprecipitation followed by mass spectrometry identified ERp46 as an AdipoR1-, but not AdipoR2-, interacting protein. Analysis of truncated constructs and GST-fusion proteins revealed the interaction was mediated by the cytoplasmic, N-terminal residues (1-70) of AdipoR1. Indirect immunofluorescence microscopy and subcellular fractionation studies demonstrated that ERp46 was present in the ER and the plasma membrane (PM). Transient knockdown of ERp46 increased the levels of AdipoR1, and AdipoR2, at the PM and this correlated with increased adiponectin-stimulated phosphorylation of AMPK. In contrast, adiponectin-stimulated phosphorylation of p38MAPK was reduced following ERp46 knockdown. Collectively these results establish ERp46 as the first AdipoR1-specific interacting protein and suggest a role for ERp46 in adiponectin receptor biology and adiponectin signalling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号