首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23334篇
  免费   1350篇
  国内免费   827篇
  2023年   346篇
  2022年   376篇
  2021年   623篇
  2020年   641篇
  2019年   991篇
  2018年   927篇
  2017年   609篇
  2016年   643篇
  2015年   751篇
  2014年   1516篇
  2013年   1843篇
  2012年   1047篇
  2011年   1417篇
  2010年   1005篇
  2009年   1084篇
  2008年   1104篇
  2007年   1133篇
  2006年   973篇
  2005年   861篇
  2004年   727篇
  2003年   638篇
  2002年   527篇
  2001年   339篇
  2000年   319篇
  1999年   317篇
  1998年   282篇
  1997年   240篇
  1996年   234篇
  1995年   206篇
  1994年   200篇
  1993年   200篇
  1992年   171篇
  1991年   161篇
  1990年   135篇
  1989年   116篇
  1988年   100篇
  1987年   92篇
  1986年   93篇
  1985年   193篇
  1984年   375篇
  1983年   305篇
  1982年   293篇
  1981年   223篇
  1980年   198篇
  1979年   169篇
  1978年   134篇
  1977年   138篇
  1976年   125篇
  1975年   105篇
  1973年   107篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
ABSTRACT:?

The demand for natural and nonpersistent insecticides is increasing day by day. Plant cell cultures could be an alternative to conventional methods of production of insecticides from field-grown plants. In vitro cultured plant cells produce a wide array of insecticides as a part of their secondary metabolism. Their ability to synthesize key enzymes and the manipulation of these could lead to the enhanced production of many insecticides of industrial importance. The development of a high-yielding hairy root culture system for thiophenes, nicotine, and phytoecdysones is of considerable interest. In this article, the current literature on various factors that influence the growth, production, and secretion of six insecticidal compounds, namely, pyrethrins, azadirachtin, thiophenes, nicotine, rotenoids, and phytoecdysones which have been prospects for the scale-up of cell cultures, genetic engineering to obtain transgenic plants, and metabolically engineered plants for increased production of bio-molecules, has been discussed. Environmental safety clearance and the future prospects of application of bio-molecules for plant-derived insecticides are presented.  相似文献   
992.
This paper describes the interaction between 2,4-dinitrophenol (DNP) with the two drug carrier proteins – human serum albumin (HSA) and human holo transferrin (HTF). Hence, binding characteristics of DNP to HSA and HTF were analyzed by spectroscopic and molecular modeling techniques. Based on results obtained from fluorescence spectroscopy, DNP had a strong ability to quench the intrinsic fluorescence of HSA and HTF through a static quenching procedure. The binding constant and the number of binding sites were calculated as 2.3?×?1011?M?1 and .98 for HSA, and 1.7?×?1011?M?1 and 1.06 for HTF, respectively. In addition, synchronous fluorescence results showed that the microenvironment of Trp had a slight tendency of increasing its hydrophobicity, whereas the microenvironment of the Tyr residues of HSA did not change and that of HTF showed a significant trend (red shift of about 4?nm) of an increase in polarity. The distance between donor and acceptor was obtained by the Förster energy according to fluorescence resonance energy transfer, and was found to be 3.99 and 3.72?nm for HSA and HTF, respectively. The critical induced aggregation concentration (CCIAC) of the drug on both proteins was determined and confirmed by an inflection point of the zeta potential behavior. Circular dichroism data revealed that the presence of DNP caused a decrease of the α-helical content of HSA and HTF, and induced a remarkable mild denaturation of both proteins. The molecular modeling data confirmed our experimental results. This study is deemed useful for determining drug dosage.  相似文献   
993.
New binary copper(II) complexes [Cu(4-mphen)2(NO3)]NO3·H2O (1), [Cu(5-mphen)2 (NO3)]NO3·H2O (2), the known complex [Cu(dmphen)2(NO3)]NO3 (3) and [Cu(tmphen)2 (NO3)]NO3·H2O (4) - (4-mphen: 4-methyl-1,10-phenanthroline, 5-mphen: 5-methyl-1,10-phenanthroline, dmphen: 4,7-dimethyl-1,10-phenanthroline, tmphen: 3,4,7,8-tetramethyl-1,10-phenanthroline), have been synthesized and characterized by CHN analysis, ESI-MS, FTIR and single-crystal X-ray diffraction techniques. Interaction of these complexes with calf thymus DNA (CT-DNA) has been investigated by absorption spectral titration, ethidium bromide (EB) and Hoechst 33,258 displacement assay and thermal denaturation measurement. These complexes cleaved pUC19 plasmid DNA in the absence and presence of an external agent. Notably, in the presence of H2O2 as an activator, the cleavage abilities of these complexes are obviously enhanced at low concentration. Addition of hydroxyl radical scavengers like DMSO shows significant inhibition of the DNA cleavage activity of these complexes. BSA quenching mechanism was investigated with regard to the type of quenching, binding constant, number of binding locations and the thermodynamic parameters. The experimental results suggested that the probable quenching mechanism was an unusual static process and hydrophobic forces play a dominant role. The CT-DNA and BSA binding efficiencies of these complexes follow the order: 4 > 3 > 1 > 2. Furthermore, in vitro cytotoxicities of these complexes on tumor cells lines (Caco-2, MCF-7 and A549) and healthy cell line (BEAS-2B) showed that these complexes exhibited anticancer activity with low IC50 values. The effect of hydrophobicity of the methyl-substituted phenanthrolines on DNA and protein binding activities of these complexes is discussed.  相似文献   
994.
Egypt has the highest prevalence of hepatitis C virus (HCV) infection worldwide with a frequency of 15%. More than 90% of these infections are due to genotype 4, and the subtype 4a (HCV-4a) predominates. Moreover, due to the increased mobility of people, HCV-4a has recently spread to several European countries. The protease domain of the HCV nonstructural protein 3 (NS3) has been targeted for inhibition by several drugs. This approach has had marked success in inhibiting genotype 1 (HCV-1), the predominant genotype in the USA, Europe, and Japan. However, HCV-4a was found to resist inhibition by a number of these drugs, and little progress has been made to understand the structural basis of its drug resistivity. As a step forward, we sequenced the NS3 HCV-4a protease gene (strain ED43) and subsequently built a 3D structural model threaded through a template crystal structure of HCV-1b NS3 protease. The model protease, HCV-4a, shares 83% sequence identity with the template protease, HCV-1b, and has nearly identical rigid structural features. Molecular dynamics simulations predict similar overall dynamics of the two proteases. However, local dynamics and 4D analysis of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) indicate conformational instability of the catalytic site in HCV-4a NS3 protease. These results suggest that the divergent dynamics behavior, more than the rigid structure, could be related to the altered catalytic activity and drug resistivity seen in HCV-4a.  相似文献   
995.
Gene therapy has converged with bone engineering over the past decade, by which a variety of therapeutic genes have been delivered to stimulate bone repair. These genes can be administered via in vivo or ex vivo approach using either viral or nonviral vectors. This article reviews the fundamental aspects and recent progresses in the gene therapy-based bone engineering, with emphasis on the new genes, viral vectors and gene delivery approaches.  相似文献   
996.
Nonstructural protein 4A (NS4A) of Dengue virus (DENV) is a membrane protein involved in rearrangements of the endoplasmic reticulum membrane that are required for formation of replication vesicles. NS4A is composed most likely of three membrane domains. The N- and C-terminal domains are supposed to traverse the lipid membrane whereas the central one is thought to reside on the membrane surface, thus forming a u-shaped protein. All three membrane domains are proposed to be helical by secondary structure prediction programs. After performing multi nanosecond molecular dynamics (MD) simulations at various temperatures (300, 310, and 315.15?K) with each of the individual domains, they are used in a docking approach to define putative association motifs of the transmembrane domains (TMDs). Two structures of the u-shaped protein are generated by separating two assembled TMDs linking them with the membrane-attached domain. Lipid undulation is monitored with the structures embedded in a fully hydrated lipid bilayer applying multiple 200?ns MD simulations at 310?K. An intact structure of the protein supports membrane undulation. The strong unwinding of the helices in the domain-linking section of one of the structures lowers its capability to induce membrane curvature. Unwinding of the link region is due to interactions of two tryptophan residues, Trp-96 and 104. These results provide first insights into the membrane-altering properties of DENV NS4A.  相似文献   
997.
Meso-tetrakis(N-methyl pyridinium-4-yl)porphyrin (TMPyP) intercalates between the base-pairs of DNA at a low [TMPyP]/[DNA base] ratio in aqueous solutions and molecular crowding conditions, which is induced by the addition of Poly(ethylene glycol) (PEG). Studied DNA-binding drugs, including TMPyP, 9-aminoacridine, ethidium bromide, and DAPI (4′,6-diamidino-2-phenylindole) showed similar binding properties in the presence or absence of PEG molecules which is examined by circular and linear dichroism. According to the LDr (reduced linear dichroism) results of the binding drugs examined in this work, PEG molecules induced no significant change compared to their binding properties in aqueous buffering systems. These results suggest that the transition moments are not expected to be perturbed significantly by PEG molecules. In this study, the experimental conditions of PEG 8000 were maintained at 35% (v/v) of total reaction volume, which is equal to the optimal molar concentration (0.0536 M as final concentration for PEG 8000) to maintain suitable cell-like conditions. Therefore, there was no need to focus on the conformational changes of the DNA helical structure, such as forming irregular aggregate structures, induced by large quantities of molecular crowding media itself at this stage.  相似文献   
998.
Biotic stress is a major cause of heavy loss in grape productivity. In order to develop biotic stress-resistant grape varieties, the key defense genes along with its pathway have to be deciphered. In angiosperm plants, lipase-like protein phytoalexin deficient 4 (PAD4) is well known to be essential for systemic resistance against biotic stress. PAD4 functions together with its interacting partner protein enhanced disease susceptibility 1 (EDS1) to promote salicylic acid (SA)-dependent and SA-independent defense pathway. Existence and structure of key protein of systemic resistance EDS1 and PAD4 are not known in grapes. Before SA pathway studies are taken in grape, molecular evidence of EDS1: PAD4 complex is to be established. To establish this, EDS1 protein sequence was retrieved from NCBI and homologous PAD4 protein was generated using Arabidopsis thaliana as template and conserved domains were confirmed. In this study, computational methods were used to model EDS1 and PAD4 and simulated the interactions of EDS1 and PAD4. Since no structural details of the proteins were available, homology modeling was employed to construct three-dimensional structures. Further, molecular dynamic simulations were performed to study the dynamic behavior of the EDS1 and PAD4. The modeled proteins were validated and subjected to molecular docking analysis. Molecular evidence of stable complex of EDS1:PAD4 in grape supporting SA defense pathway in response to biotic stress is reported in this study. If SA defense pathway genes are explored, then markers of genes involved can play pivotal role in grape variety development especially against biotic stress leading to higher productivity.  相似文献   
999.
Nanomaterials with superior physiochemical properties have been rapidly developed and integrated in every aspect of cell engineering and therapy for translating their great promise to clinical success. Here we demonstrate the multifaceted roles played by innovatively-designed nanomaterials in addressing key challenges in cell engineering and therapy such as cell isolation from heterogeneous cell population, cell instruction in vitro to enable desired functionalities, and targeted cell delivery to therapeutic sites for prompting tissue repair. The emerging trends in this interdisciplinary and dynamic field are also highlighted, where the nanomaterial-engineered cells constitute the basis for establishing in vitro disease model; and nanomaterial-based in situ cell engineering are accomplished directly within the native tissue in vivo. We will witness the increasing importance of nanomaterials in revolutionizing the concept and toolset of cell engineering and therapy which will enrich our scientific understanding of diseases and ultimately fulfill the therapeutic demand in clinical medicine.  相似文献   
1000.
Recent studies have shown the gene expression of several transporters to be circadian rhythmic. However, it remains to be elucidated whether the expression of P‐glycoprotein, which is involved in the transport of many medications, undergoes 24 h rhythmicity. To address this issue, we investigated daily profiles of P‐glycoprotein mRNA and protein levels in peripheral mouse tissues. In the liver and intestine, but not in the kidney, Abcb1a mRNA expression showed clear 24 h rhythmicity. On the other hand, Abcb1b and Abcb4, the other P‐glycoprotein genes, did not exhibit significant rhythmic expression in the studied tissues. In the intestine, levels of whole P‐glycoprotein also exhibited a daily rhythm, with a peak occurring in the latter half of the light phase and a trough at the onset of the light phase. Consistent with the day‐night change of P‐glycoprotein level, the ex vivo accumulation of digoxin, an Abcb1a P‐glycoprotein substrate, into the intestinal segments at the onset of dark phase was significantly lower than it was at the onset of the light phase. Thus, Abcb1a P‐glycoprotein expression, and apparently its function, are 24 h rhythmic at least in mouse intestine tissue. This circadian variation might be involved in various chronopharmacological phenomena.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号