首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   3篇
  国内免费   1篇
  2023年   4篇
  2022年   15篇
  2021年   6篇
  2020年   9篇
  2019年   7篇
  2018年   24篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   14篇
  2013年   14篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  1991年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
71.

Background

Nonalcoholic steatohepatitis (NASH) is a hepatic manifestation of the growing metabolic syndrome epidemic that could progress to cirrhosis. Animal models adequately mimicking this condition in humans are scanty.

Aim

The objective of our study was to investigate whether high-fat diets (HFD) with adequate methionine and choline levels can induce pathophysiological features typical of human NASH in C57BL/6J mice.

Methods

Forty C57BL/6J mice, divided into control and high-fat (HF) groups, were fed low-fat diet and HFD, ad libitum respectively for 20 weeks. At the end of 20 weeks, animals were sacrificed and assays were performed for blood biomarkers typical of human NASH. Adipose tissue depots were collected and liver samples were processed for histological examination.

Results

High-fat feeding led to increased triglyceride accumulation in the liver (8.9 μmol/100 mg liver tissue vs. 2.6 μmol/100 mg for control) and induced histopathological features of human NASH including hepatic steatosis, ballooning inflammation and fibrosis. Expressions of proteins and chemokines predominant in NASH including collagens I, III and IV and platelet derived growth factor (PDGF) A and B were significantly higher in animals fed the HFD. Liver enzymes alanine transaminase, aspartate transaminase and alkaline phosphatase were significantly (P<.05) elevated in the HF group compared to controls. Mice on HFD also developed hyperglycemia, hyperinsulinemia, hypoadiponectinemia along with elevated tumor necrosis factor α, resistin, leptin, free fatty acids, transforming growth factor β and malondialdehyde levels that characterize NASH in humans.

Conclusion

Long-term HF feeding with adequate methionine and choline can induce many of the pathophysiological features typical of human NASH in C57BL/6J mice.  相似文献   
72.
《Biomarkers》2013,18(8):670-678
The need for minimally invasive biomarkers to predict the progression of non-alcoholic fatty liver disease to non-alcoholic steatohepatitis is a priority. Oxidative stress and mitochondrial dysfunction contribute in this physiopathological process. The aim of this study was to analyze the potential role of erythrocytes as surrogate biomarkers of hepatic mitochondrial oxidative status in an animal model under different dietary oxidative conditions. Interestingly, we found that erythrocyte antioxidant status correlated with triglyceride content (p?<?0.05–p?<?0.001), thiobarbituric acid reactive species levels (p?<?0.001) and with liver mitochondrial antioxidant levels (p?<?0.001). These data suggest that erythrocyte antioxidant defenses could be used as sensitive and minimally invasive biomarkers of mitochondrial status in diverse oxidative conditions.  相似文献   
73.
Methionine- and choline-deficient diet (MCD) is a model for nonalcoholic steatohepatitis (NASH) in rodents. However, the mechanism of NASH development by dietary methionine/choline deficiency remains undetermined. To elucidate the early metabolic changes associated with MCD-NASH, serum metabolomic analysis was performed using mice treated with MCD and control diet for 3 days and 1  week, revealing significant increases in oleic and linoleic acids after MCD treatment. These increases were correlated with reduced body weight and white adipose tissue (WAT) mass, increased phosphorylation of hormone-sensitive lipase, and up-regulation of genes encoding carboxylesterase 3 and β2-adrenergic receptor in WAT, indicating accelerated lipolysis in adipocytes. The changes in serum fatty acids and WAT by MCD treatment were reversed by methionine supplementation, and similar alterations were detected in mice fed a methionine-deficient diet (MD), thus demonstrating that dietary methionine deficiency enhances lipolysis in WAT. MD treatment decreased glucose and increased fibroblast growth factor 21 in serum, thus exhibiting a similar metabolic phenotype as the fasting response. Comparison between MCD and choline-deficient diet (CD) treatments suggested that the addition of MD-induced metabolic alterations, such as WAT lipolysis, to CD-induced hepatic steatosis promotes liver injury. Collectively, these results demonstrate an important role for dietary methionine deficiency and WAT lipolysis in the development of MCD-NASH.  相似文献   
74.
Abnormal lipid metabolism may contribute to the increase of reactive oxygen species (ROS) and inflammation in the pathogenesis of non-alcoholic steatohepatitis (NASH). Apolipoprotein A-I (apoA-I) accepts cellular cholesterol and phospholipids transported by ATP-binding cassette transporter A1 to generate nascent high density lipoprotein particles. Previous studies revealed that the overexpression of ABCA1 or apoA-I alleviated hepatic lipid levels by modifying lipid transport. Here, we examined the effect of apoA-I overexpression on ROS and genes involved in inflammation in both BEL-7402 hepatocytes and mice. Human apoA-I was overexpressed by transfection in BEL-7402 hepatocytes and by an adenoviral vector in C57BL/6J mice fed a methionine choline-deficient diet. The overexpression of apoA-I in both models resulted in decreased ROS and lipid peroxidation levels, as well as a reduced MAPK phosphorylation and decreased expression levels of c-Fos and COX-2. These results suggest that apoA-I overexpression can reduce steatosis by decreasing ROS levels and suppressing COX-2-induced inflammation in hepatocytes. MAPK and c-Fos are involved in this regulatory process.  相似文献   
75.
Non-alcoholic steatohepatitis (NASH) is characterized by the presence of steatosis, inflammation, and fibrosis and is believed to develop via a “two-hit process”; however, its pathophysiology remains unclear. Fibroblast growth factors (FGFs) are heparin-binding polypeptides with diverse biological activities in many developmental and metabolic processes. In particular, FGF5 is associated with high blood pressure. We investigated the function of FGF5 in vivo using spontaneously Fgf5 null mice and explored the role of diet in the development of NASH. Mice fed a high-fat diet gained little weight and had higher serum alanine transaminase, aspartate amino transferase, and non–high-density lipoprotein-cholesterol levels. Liver histology indicated marked inflammation, focal necrosis, fat deposition, and fibrosis, similar to the characteristics of NASH. FGF5 and a high-fat diet play significant roles in the pathophysiology of hepatic fibrosis and Fgf5 null mice may provide a suitable model for liver fibrosis or NASH.  相似文献   
76.
The pathogenesis of non-alcoholic steatohepatitis (NASH) is not fully understood. In the present study, both in vitro and in vivo vimentin expression and secretion in NASH were investigated. The exposure of palmitate and lipopolysaccharide (LPS) to HepG2 cells enhanced caspase-3 activity and vimentin expression, respectively. The combined effects of both treatments on vimentin expression and caspase-3 activation appeared to be synergic. In contrast, blockade of caspase-3 activity by zVADfmk resulted in a significant reduction of cleaved vimentin and secreted vimentin into the culture supernatant. Similarly, lipid accumulation and inflammation occurred in mice fed a methionine-choline-deficient diet; thus, vimentin expression and serum cleaved vimentin levels were increased. However, vimentin was not significantly upregulated, and no cleavage occurred in mice fed a high-fat diet. It was conclusively determined that lipid accumulation in hepatocytes induces apoptosis through a caspase-3 dependent pathway; whereas, LPS stimulates vimentin expression, leading to its cleavage and secretion. Increased vimentin fragment levels indicated the existence of substantial hepatocellular death via an apoptotic mechanism. [BMB Reports 2014; 47(8): 457-462]  相似文献   
77.
Obesity and high-fat diet (HFD) are known to cause proinflammatory and procoagulation states and suggested to become a risk of developing thromboembolic diseases. Non-alcoholic fatty liver disease (NAFLD) is usually associated with obesity and HFD, and a part of NAFLD is known to progress to nonalcoholic steatohepatitis (NASH), the pathogenesis of which has not been fully elucidated. In the current study, we examined the influence of short-term HFD on hepatic expression of the molecules related to inflammation, coagulation, metabolism, and cellular stresses from the perspective that HFD itself can be a risk for the development to NASH. In the analysis in short-term (4 days to 14 days) HFD-fed mice, we found out that HFD increased hepatic expression of IFN-γ, TNF-α, IL-10, monocyte chemotactic protein-1 (MCP-1), tissue factor (TF), plasminogen activator inhibitor-1 (PAI-1) mRNAs, and fibrin/fibrinogen deposition in the liver tissues. And it was suggested that metabolic alterations and endoplasmic reticulum (ER) stresses induced by the HFD intake were associated with this proinflammatory and procoagulation states. When we administered concanavalin A (Con A) to these HFD-fed mice, the extent of liver injury was dramatically exacerbated in HFD-fed mice. Heparin treatment to Con A-administered, HFD-fed mice (for 4 days) profoundly ameliorated the extent of liver injury. These suggest that even short-term of HFD intake induces proinflammatory and procoagulation states in the liver and thereby increases the susceptibility of the liver to circulating inflammatory stimuli. We think that it may explain a part of NASH pathogenesis.  相似文献   
78.
Several studies have been conducted to examine the association between PPAR-γ2 Pro12Ala polymorphism and non-alcoholic fatty liver disease (NAFLD), but the results remain inconsistent. In this study, a meta-analysis was performed to assess the association of PPAR-γ Pro12Ala polymorphism with NAFLD risk. A total of 8 case–control studies, including 1697 cases and 2427 controls, were selected. Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using fixed- or random-effects model. Overall, no evidence has indicated that the Pro12Ala polymorphism was associated with the susceptibility to NAFLD. Besides, stratified analysis with ethnicity also indicated that no significant association between PPAR-γ Pro12Ala and the risk of NAFLD under all for genetic model in both Asian and Caucasian populations was observed. This meta-analysis indicated that the Pro12Ala polymorphism is not associated with NAFLD risk. Large and well-designed studies are warranted to validate our findings.  相似文献   
79.

Objective

To investigate the relationship between the resistin intronic + 299G/A polymorphism and nonalcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM).

Methods

We selected 738 T2DM patients, including 395 with NAFLD and 343 without fatty liver disease, as well as 279 healthy control individuals, and analyzed their resistin + 299G/A polymorphism genotype by polymerase chain reaction–restriction fragment length polymorphism.

Results

Plasma resistin levels in T2DM patients with NAFLD were at the highest (P < 0.05). The frequency of AA genotype at the + 299 site of the resistin gene in patients with concurrent T2DM combined with NAFLD was significantly different from that in the control (P < 0.05). The AA genotype was found to be associated with a 1.80-fold increased risk for T2DM combined with NAFLD, 2.05-fold increased risk for obesity and 2.37-fold increased risk for obesity of abdominal type compared to the GG (P < 0.05, respectively). The multivariate non-conditional logistic regression model analysis further shows that the AA genotype is a risk factor for the development of NAFLD in T2DM patients (OR, 2.32; 95% CI, 1.05–4.68; P < 0.05).

Conclusion

The resistin + 299AA genotype may be associated with increases in the risk of the NAFLD development in T2DM patients.  相似文献   
80.

Background

In recent years, there has been a growing interest to explore the association between liver injury and diabetes. Advanced glycated end product (AGE) formation which characterizes diabetic complications is formed through hyperglycemia mediated oxidative stress and is itself a source for ROS. Further, in VL-17A cells over-expressing ADH and CYP2E1, greatly increased oxidative stress and decreased viability have been observed with high glucose exposure.

Methods

In VL-17A cells treated with high glucose and pretreated with the different inhibitors of ADH and CYP2E1, the changes in cell viability, oxidative stress parameters and formation of AGE, were studied.

Results

Inhibition of CYP2E1 with 10 μM diallyl sulfide most effectively led to decreases in the oxidative stress and toxicity as compared with ADH inhibition with 2 mM pyrazole or the combined inhibition of ADH and CYP2E1 with 5 mM 4-methyl pyrazole. AGE formation was decreased in VL-17A cells when compared with HepG2 cells devoid of the enzymes. Further, AGE formation was decreased to the greatest extent with the inhibitor for CYP2E1 suggesting that high glucose inducible CYP2E1 and the consequent ROS aid AGE formation.

Conclusions

Thus, CYP2E1 plays a pivotal role in the high glucose induced oxidative stress and toxicity in liver cells as observed through direct evidences obtained utilizing the different inhibitors for ADH and CYP2E1.

General significance

The study demonstrates the role of CYP2E1 mediated oxidative stress in aggravating hyperglycemic insult and suggests that CYP2E1 may be a vital component of hyperglycemia mediated oxidative injury in liver.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号