排序方式: 共有129条查询结果,搜索用时 9 毫秒
51.
Georgios Grammatikos Christiane Mühle Nerea Ferreiros Sirkka Schroeter Dimitra Bogdanou Stephanie Schwalm Gudrun Hintereder Johannes Kornhuber Stefan Zeuzem Christoph Sarrazin Josef Pfeilschifter 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(7):1012-1020
Sphingolipids constitute bioactive molecules with functional implications in homeostasis and pathogenesis of various diseases. However, the role of sphingolipids as possible disease biomarkers in chronic liver disease remains largely unexplored. In the present study we used mass spectrometry and spectrofluorometry methods in order to quantify various sphingolipid metabolites and also assess the activity of an important corresponding regulating enzyme in the serum of 72 healthy volunteers as compared to 69 patients with non-alcoholic fatty liver disease and 69 patients with chronic hepatitis C virus infection. Our results reveal a significant upregulation of acid sphingomyelinase in the serum of patients with chronic liver disease as compared to healthy individuals (p < 0.001). Especially in chronic hepatitis C infection acid sphingomyelinase activity correlated significantly with markers of hepatic injury (r = 0.312, p = 0.009) and showed a high discriminative power. Accumulation of various (dihydro-) ceramide species was identified in the serum of patients with non-alcoholic fatty liver disease (p < 0.001) and correlated significantly to cholesterol (r = 0.448, p < 0.001) but showed a significant accumulation in patients with normal cholesterol values as well (p < 0.001). Sphingosine, a further bioactive metabolite, was also upregulated in chronic liver disease (p < 0.001). However, no significant correlation to markers of hepatic injury was identified. Conclusion: Chronic hepatitis C virus infection and non-alcoholic fatty liver disease induce a significant upregulation of serum acid sphingomyelinase which appears as a novel biomarker in chronic hepatopathies. Further studies are required to elucidate the potential of the sphingolipid signaling pathway as putative therapeutic target in chronic liver disease. 相似文献
52.
53.
《Bioorganic & medicinal chemistry letters》2020,30(21):127465
Use of the oxadiazolone acid isostere in triiodothyronine analogs yielded potent and selective agonists for the thyroid hormone receptor β. Selected examples showed good in-vivo efficacy in a rat hypercholesterolemic model. One compound was further profiled in a diet-induced mouse model of nonalcoholic steatohepatitis (NASH) and showed robust target engagement and significant histological improvements in both liver steatosis and fibrosis. 相似文献
54.
《遗传学报》2021,48(7):531-539
Fructose metabolism and fructose kinase KHKe C/A are key factors in the development of lipid oversynthesis-promoted metabolic disorders and cancer. Here, we summarize and discuss the current knowledge about the specific features of fructose metabolism and the distinct roles of KHKe C and KHKe A in metabolic liver diseases and their relevant metabolic disorders and cancer, and we highlight the specific protein kinase activity of KHKe A in tumor development. In addition, different approaches that have been used to inhibit KHK and the exploration of KHK inhibitors in clinical treatment are introduced. 相似文献
55.
Trenton Glaser Leonardo Baiocchi Tianhao Zhou Heather Francis Ilaria Lenci Giuseppe Grassi Lindsey Kennedy Suthat Liangpunsakul Shannon Glaser Gianfranco Alpini Fanyin Meng 《Journal of cellular and molecular medicine》2020,24(11):5955-5965
Non-alcoholic fatty liver disease (NAFLD) and alcohol-associated liver disease (ALD) represent a spectrum of injury, ranging from simple steatosis to steatohepatitis and cirrhosis. In humans, in fact, fatty changes in the liver, possibly leading to end-stage disease, were observed after chronic alcohol intake or in conditions of metabolic impairment. In this article, we examined the features and the pro-inflammatory pathways leading to non-alcoholic and alcoholic steatohepatitis. The involvement of several events (hits) and multiple inter-related pathways in the pathogenesis of these diseases suggest that a single therapeutic agent is unlikely to be an effective treatment strategy. Hence, a combination treatment towards multiple pro-inflammatory targets would eventually be required. Gut-liver crosstalk is involved not only in the impairment of lipid and glucose homoeostasis leading to steatogenesis, but also in the initiation of inflammation and fibrogenesis in both NAFLD and ALD. Modulation of the gut-liver axis has been suggested as a possible therapeutic approach since gut-derived components are likely to be involved in both the onset and the progression of liver damage. This review summarizes the translational mechanisms underlying pro-inflammatory signalling and gut-liver axis in non-alcoholic and alcoholic steatohepatitis. With a multitude of people being affected by liver diseases, identification of possible treatments and the elucidation of pathogenic mechanisms are elements of paramount importance. 相似文献
56.
PPAR delta is the only member in the PPAR subfamily of nuclear receptors that is not a target of current drugs. Animal studies demonstrate PPAR delta activation exerts many favorable effects, including reducing weight gain, increasing skeletal muscle metabolic rate and endurance, improving insulin sensitivity and cardiovascular function and suppressing atherogenic inflammation. These activities stem largely from the ability of PPAR delta to control energy balance, reduce fat burden and protect against lipotoxicity caused by ectopic lipid deposition. Therefore, PPAR delta represents a novel therapeutic target and the development of PPAR delta gonists/modulators may be useful for treating the whole spectrum of metabolic syndrome. 相似文献
57.
Soo Hyun Kim Gyuri Kim Dai Hoon Han Milim Lee Irene Kim Bohkyung Kim 《Autophagy》2017,13(10):1767-1781
Impairment in macroautophagy/autophagy flux and inflammasome activation are common characteristics of nonalcoholic steatohepatitis (NASH). Considering the lack of approved agents for treating NASH, drugs that can enhance autophagy and modulate inflammasome pathways may be beneficial. Here, we investigated the novel mechanism of ezetimibe, a widely prescribed drug for hypercholesterolemia, as a therapeutic option for ameliorating NASH. Human liver samples with steatosis and NASH were analyzed. For in vitro studies of autophagy and inflammasomes, primary mouse hepatocytes, human hepatoma cells, mouse embryonic fibroblasts with Ampk or Tsc2 knockout, and human or primary mouse macrophages were treated with ezetimibe and palmitate. Steatohepatitis and fibrosis were induced by feeding Atg7 wild-type, haploinsufficient, and knockout mice a methionine- and choline-deficient diet with ezetimibe (10 mg/kg) for 4 wk. Human livers with steatosis or NASH presented impaired autophagy with decreased nuclear TFEB and increased SQSTM1, MAP1LC3-II, and NLRP3 expression. Ezetimibe increased autophagy flux and concomitantly ameliorated lipid accumulation and apoptosis in palmitate-exposed hepatocytes. Ezetimibe induced AMPK phosphorylation and subsequent TFEB nuclear translocation, related to MAPK/ERK. In macrophages, ezetimibe blocked the NLRP3 inflammasome-IL1B pathway in an autophagy-dependent manner and modulated hepatocyte-macrophage interaction via extracellular vesicles. Ezetimibe attenuated lipid accumulation, inflammation, and fibrosis in liver-specific Atg7 wild-type and haploinsufficient mice, but not in knockout mice. Ezetimibe ameliorates steatohepatitis by autophagy induction through AMPK activation and TFEB nuclear translocation, related to an independent MTOR ameliorative effect and the MAPK/ERK pathway. Ezetimibe dampens NLRP3 inflammasome activation in macrophages by modulating autophagy and a hepatocyte-driven exosome pathway. 相似文献
58.
Katsuhiko Takahashi Naoko Sasabe Kumiko Ohshima Keiko Kitazato Rina Kato Yutaka Masuda Mika Tsurumaki Takashi Obama Shin-ichi Okudaira Junken Aoki Hiroyuki Arai Tomohiro Yamaguchi Hiroyuki Itabe 《Journal of lipid research》2010,51(9):2571-2580
Cellular lipid droplets (LD) are organelles involved in cellular lipid metabolism. When liver cellular components were fractionated using sucrose density gradient centrifugation, adipose differentiation-related protein (ADRP) was distributed in both the top and bottom fractions, which correspond to the LD and membranous fractions, respectively, in the mouse liver under normal feeding conditions. After overnight fasting, triacylglycerol and ADRP increased nearly 2.5-fold in the mouse liver, and a portion appeared in the intermediate-density LD (iLD) fractions. ADRP in the iLD fractions was also increased in a mouse nonalcoholic steatohepatitis model induced by methione/choline-deficient diet. When HuH-7 human hepatoma cells were incubated with oleic acid for 24 h, the amount of ADRP increased, and it was distributed in both the LD and membrane fractions. However, ADRP appeared in the iLD fractions upon treatment of HuH-7 cells with glucagon. This behavior of ADRP was cAMP-dependent, as the ADRP-positive iLD fractions were induced by dibutylyl cAMP and were blocked by protein kinase A inhibitors. A portion of ADRP colocalized microscopically with calnexin, which is present in the iLD fractions, by treatment of HuH-7 cells or human primary hepatocytes with oleic acid and glucagon, but not by treatment with oleic acid alone. Glucagon has a role in the reorganization of endoplasmic reticulum membranes to generate ADRP-associated lipid-poor particles in hepatic cells, which is related to LD formation during lipid storage. 相似文献
59.
Nonalcoholic fatty liver disease (NAFLD) has recently been recognized as an important etiology contributing to the increased incidence of hepatocellular carcinoma (HCC). NAFLD, characterized by fat accumulation in the liver, is affecting at least one-third of the global population. The more aggressive form, nonalcoholic steatohepatitis (NASH), is characterized by hepatocyte necrosis and inflammation. The development of effective approaches for disease prevention and/or treatment heavily relies on deep understanding of the mechanisms underlying NAFLD to HCC development. However, this has been largely hampered by the lack of robust experimental models that recapitulate the full disease spectrum. This review will comprehensively describe the current in vitro and mouse models for studying NAFLD/NASH/HCC, and further emphasize their applications and possible future improvement for better understanding the molecular mechanisms involved in the cascade of NAFLD to HCC progression. 相似文献