首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6314篇
  免费   605篇
  国内免费   871篇
  2023年   68篇
  2022年   75篇
  2021年   133篇
  2020年   139篇
  2019年   228篇
  2018年   218篇
  2017年   218篇
  2016年   177篇
  2015年   198篇
  2014年   322篇
  2013年   344篇
  2012年   282篇
  2011年   361篇
  2010年   272篇
  2009年   330篇
  2008年   343篇
  2007年   377篇
  2006年   332篇
  2005年   278篇
  2004年   219篇
  2003年   243篇
  2002年   203篇
  2001年   148篇
  2000年   136篇
  1999年   157篇
  1998年   128篇
  1997年   137篇
  1996年   105篇
  1995年   86篇
  1994年   88篇
  1993年   119篇
  1992年   87篇
  1991年   67篇
  1990年   58篇
  1989年   52篇
  1988年   60篇
  1987年   42篇
  1986年   58篇
  1985年   99篇
  1984年   152篇
  1983年   92篇
  1982年   111篇
  1981年   78篇
  1980年   85篇
  1979年   84篇
  1978年   44篇
  1977年   34篇
  1976年   38篇
  1975年   35篇
  1974年   24篇
排序方式: 共有7790条查询结果,搜索用时 703 毫秒
141.
Reduced soil N availability under elevated CO2 may limit the plant's capacity to increase photosynthesis and thus the potential for increased soil C input. Plant productivity and soil C input should be less constrained by available soil N in an N2‐fixing system. We studied the effects of Trifolium repens (an N2‐fixing legume) and Lolium perenne on soil N and C sequestration in response to 9 years of elevated CO2 under FACE conditions. 15N‐labeled fertilizer was applied at a rate of 140 and 560 kg N ha?1 yr?1 and the CO2 concentration was increased to 60 Pa pCO2 using 13C‐depleted CO2. The total soil C content was unaffected by elevated CO2, species and rate of 15N fertilization. However, under elevated CO2, the total amount of newly sequestered soil C was significantly higher under T. repens than under L. perenne. The fraction of fertilizer‐N (fN) of the total soil N pool was significantly lower under T. repens than under L. perenne. The rate of N fertilization, but not elevated CO2, had a significant effect on fN values of the total soil N pool. The fractions of newly sequestered C (fC) differed strongly among intra‐aggregate soil organic matter fractions, but were unaffected by plant species and the rate of N fertilization. Under elevated CO2, the ratio of fertilizer‐N per unit of new C decreased under T. repens compared with L. perenne. The L. perenne system sequestered more 15N fertilizer than T. repens: 179 vs. 101 kg N ha?1 for the low rate of N fertilization and 393 vs. 319 kg N ha?1 for the high N‐fertilization rate. As the loss of fertilizer‐15N contributed to the 15N‐isotope dilution under T. repens, the input of fixed N into the soil could not be estimated. Although N2 fixation was an important source of N in the T. repens system, there was no significant increase in total soil C compared with a non‐N2‐fixing L. perenne system. This suggests that N2 fixation and the availability of N are not the main factors controlling soil C sequestration in a T. repens system.  相似文献   
142.
The toxicity of a commercial formulation of the insecticide parathion‐methyl to the N2‐fixing filamentous cyanobacterium (blue‐green alga) Cylindrospermum, sp. was studied. A concentration of parathion‐methyl of 0.5 ppm caused growth increase in liquid growth media. The minimum inhibitory concentration of parathion‐methyl for both types (N2, fixing and nitrate supplemented) of liquid and solid media was 1.0 ppm. LC50 values were: 4.4 ppm (liquid, N2, fixing), 5.5 ppm (liquid, nitrate supplemented), 3.3 ppm (agar, N2‐fixing) and 4.0 ppm (agar, nitrate supplemented). LC100 values for N2‐fixing liquid and both types of agar media were 10.0 ppm, while for the liquid nitrate supplemented medium the LC100 was 12.0 ppm. Both akinete (spore) formation and germination were inhibited below the highest permissive concentration of 8.0 ppm, with the insecticide incorporated in the agar media. In soil, the LC50 and LC100 values for parathion‐methyl were 13.6 and 30 ppm, respectively. Both the dehydrogenase activity of heterocysts (monitored by 2,3,5‐triphenyl tetrazolium chloride reduction) and the nitrogen concentration of cultures (estimated by the micro‐Kjeldahl method) were affected by the insecticide, but the latter (N2‐fixation) was more sensitive. The Kruskal‐Wallis H test on the numbers of vegetative cells in the filaments revealed that the insecticide significantly affected the division of vegetative cells. The cyanobacterium could detoxify the growth medium containing high levels (30 and 40 ppm) of the insecticide in short‐term exposures at the expense of cell viability.  相似文献   
143.
Abstract: Photoprotection mechanisms have been studied during autumnal senescence in sun and shade leaves of woody plants with different ecological characteristics and senescence patterns. Three of them belonging to the same family, Betulaceae: the shade‐intolerant and early successional species (Betula alba L.), the shade‐tolerant and late successional species (Corylus avellana L.), and an N‐fixing tree with low N resorption efficiency (Alnus glutinosa L.). The other two species: a shade‐intolerant (Populus tremula L.) and a shade‐tolerant (Cornus sanguinea L.), were chosen because of their ability to accumulate anthocyanins during autumnal leaf senescence. The study of plants with different ecological strategies allowed us to establish general trends in photoprotection mechanisms during autumnal senescence, when nutrient remobilisation occurs, but also during whole leaf ontogeny. We have not found a clear relationship between shade tolerance and the level of photoprotection; the main difference between both groups of species being the presence of α‐carotene in shade leaves of shade‐tolerant species. Preceding autumn, nitrogen resorption started in mid‐summer and occurred in parallel with a slight and continuous ascorbate, chlorophyll and carotenoid degradation. However, the ascorbate pool remained highly reduced and lipid oxidation did not increase at this time. Contrasting with ascorbate, α‐tocopherol accumulated progressively in all species. Only during the last stages of senescence was chlorophyll preferentially degraded with respect to carotenoids, leading to the yellowing of leaves, except in A. glutinosa in which a large retention of chlorophyll and N took place. Senescing leaves were characterised, except in C. sanguinea, by a relative increase in the proportion of de‐epoxidised xanthophylls: zeaxanthin, antheraxanthin and lutein. The light‐induced accumulation of anthocyanins in C. sanguinea could play an additional protective role, compensating for the low retention of de‐epoxidised xanthophylls. These different strategies among deciduous species are consistent with a role for photoprotective compounds in enhancing nitrogen remobilization and storage for the next growing season.  相似文献   
144.
The wet heathland communities of the Ericetum tetralicis and the Cirsio-Molinietum have declined in the Netherlands due to acidification, eutrophication and lowering of the water table. To investigate the prospects of restoration of both communities, the effects of sod cutting and hydrological measures on vegetation and soil chemistry were studied in two nature reserves where these plant communities occurred decades ago. The combination of sod cutting and hydrological measures has restored several rare, groundwater dependent heathland communities. Sod cutting has restored the Ericetum tetralicis, but not the Cirsio-Molinietum. This might be due to the absence of viable seeds of characteristic species of the Cirsio-Molinietum and/or the absence of optimal site conditions, especially high phosphorus concentrations in the top soil. The high phosphorus concentrations might be a consequence of high mineralization rates and/or prolonged inundation with iron-poor water and the decreased flux of iron-rich groundwater into the topsoil. Restoration of the Cirsio-Molinietum only seems possible when sod cutting is carried out together with hydrological measures that counter prolonged inundation and reinforce the discharge of base and iron-rich groundwater.  相似文献   
145.
Recombinant isopenicillin N synthase fromStreptomyces clavuligerus was produced in the form of inactive inclusion bodies inEscherichia coli. These inclusion bodies were solubilized by treatment with 5 M urea under reducing conditions. Optimization of refolding conditions to recover active isopenicillin N synthase indicated that a dialysis procedure carried out at a protein concentration of about 1.0 mg ml–1 gave maximal recovery of active isopenicillin N synthase. Solubilized isopenicillin N synthase of more than 95% purity was obtained by passing this material through a DEAE-Trisacryl ion exchange column. Expression studies conducted at different temperatures indicated that isopenicillin N synthase was produced predominantly in a soluble, active form when expression was conducted at 20°C, and accounted for about 20% of the total soluble protein. This high-level production facilitated the purification of soluble isopenicillin N synthase to near homogeneity in four steps. Characterization of the purified soluble and solubilized isopenicillin N synthase revealed that they are very similar.  相似文献   
146.
Summary The perdeuteration of aliphatic sites in large proteins has been shown to greatly facilitate the process of sequential backbone and side-chain 13C assignments and has also been utilized in obtaining long-range NOE distance restraints for structure calculations. To obtain the maximum information from a 4D 15N/15N-separated NOESY, as many main-chain and side-chain 1HN/15N resonances as possible must be assigned. Traditionally, only backbone amide 1HN/15N resonances are assigned by correlation experiments, whereas slowly exchanging side-chain amide, amino, and guanidino protons are assigned by NOEs to side-chain aliphatic protons. In a perdeuterated protein, however, there is a minimal number of such protons. We have therefore developed several gradient-enhanced and sensitivity-enhanced pulse sequences, containing water-flipback pulses, to provide through-bond correlations of the aliphatic side-chain 1HN/15N resonances to side-chain 13C resonances with high sensitivity: NH2-filtered 2D 1H-15N HSQC (H2N-HSQC), 3D H2N(CO)C/ and 3D H2N(COC/)C/ for glutamine and asparagine side-chain amide groups; 2D refocused H(N/)C/ and H(N/C/)C/ for arginine side-chain amino groups and non-refocused versions for lysine side-chain amino groups; and 2D refocused H(N)C and nonrefocused H(N.)C for arginine side-chain guanidino groups. These pulse sequences have been applied to perdeuterated 13C-/15N-labeled human carbonic anhydrase II (2H-HCA II). Because more than 95% of all side-chain 13C resonances in 2H-HCA II have already been assigned with the C(CC)(CO)NH experiment, the assignment of the side-chain 1HN/15N resonances has been straightforward using the pulse sequences mentioned above. The importance of assigning these side-chain HN protons has been demonstrated by recent studies in which the calculation of protein global folds was simulated using only 1HN-1HN NOE restraints. In these studies, the inclusion of NOE restraints to side-chain HN protons significantly improved the quality of the global fold that could be determined for a perdeuterated protein [R.A. Venters et al. (1995) J. Am. Chem. Soc., 117, 9592–9593].To whom correspondence should be addressed.  相似文献   
147.
Abstract The present study was undertaken to determine the infectivity of Cryptosporidium parvum oocysts for immunosup-pressed adult C57BL/6N mice after the oocysts had been stored from 1–48 months at 4°C in 2.5% potassium dichromate. All mice inoculated with oocysts 1–18 months old developed patent infections, while mice inoculated with older oocysts remained uninfected. The prepatent period was extended from 2 to 6 or 7 days as the storage time for oocysts increased. The finding that C. parvum oocysts remain infective for mice for at least 18 months offers important economic and time-saving advantages for investigators who frequently require large numbers of oocysts that must be painstakingly purified from calf manure.  相似文献   
148.
Following protoplast fusion between Nicotiana tabacum (dhfr) and N. megalosiphon (nptII) somatic hybrids were selected on the basis of dual resistance to kanamycin and methotrexate. Despite strong selection for parental nuclear-encoded resistances, only nine N. tabacum (+) N. megalosiphon somatic hybrids were obtained. A preferential loss of the parental N. tabacum nuclear and organelle genome was apparent in some plants in spite of the lack of genomic inactivation by the irradiation or chemical treatment of the parental protoplasts. Only six of the nine hybrids recovered possessed both parental profiles of nuclear RFLPs and isoenzymes. The remaining three hybrids were highly asymmetric with two being identical to N. megalosiphon except for minor morphological differences and rearranged or recombined mitochondrial DNAs (mtDNA), while the other one was distinguishable only by the presence of a rearranged or recombined mtDNA, and was therefore possibly a cybrid. Overall, eight somatic hybrids possessed rearranged or recombined mtDNAs and chloroplast inheritance was non-random since eight possessed N. megalosiphon-type chloroplasts and only one had N. tabacum chloroplasts. In contrast, using the same selection approach, numerous morphologically similar symmetric somatic hybrids with nuclear RFLPs and isozymes of both the parental species were recovered from control fusions between N. tabacum and the more closely related N. sylvestris. In spite of the low frequency of recovery of symmetric N. tabacum (+) N. megalosiphon hybrids in this study, one of these hybrids displayed a significant degree of self-fertility allowing for back-crosses to transfer N. megalosiphon disease-resistance traits to N. tabacum. Plant Research Centre Contribution No. 1579  相似文献   
149.
This study was undertaken to determine which of the two NO3? fluxes (influx or efflux) across plasma membranes of root cells is the target of those amino acids which have been shown to inhibit net NO3? uptake (Muller & Touraine 1992, Journal of Experimental Botany 43 , 617–623). Parallel experiments were performed to mea-sure either the time course of 15NO3? release from roots of soybean seedlings previously labelled with this isotope into non-labelled solution, or the time course of 15N accumulation from labelled 15NO3? solution in non-labelled seedlings. Focusing on the fate of 15NO3? in the cytoplasmic compartment, a model is developed to describe the time courses of the accumulation and release of tracer across the plasma membranes of root cells. Both time courses can be described by the sum of an exponential plus a linear term. In our material, the linear part of the accumulation time course is obscured by the NO3? fluxes exiting the cytoplasm, and the curve thus appears to be quasilinear over several minutes. However, we show that the use of the net tracer accumulation rate during this time period as an estimate of NO3? influx does not provide accurate estimates of influx and efflux. By contrast, 15NO3? efflux analysis permits calculation of the unidirectional fluxes across plasma membranes of root cells and the kinetic parameters of the cytoplasmic NO3? pool. Under our experimental conditions, efflux accounted for 30 to 50% of influx, and the cytoplasmic NO3? content was found to be in the 70–400nmol g?1 fw range. Using this methodology, the effect of amino acid accumulation on unidirectional fluxes of nitrate was then examined. Pretreatments of the seedlings with an amino acid which has been shown to inhibit net NO3? uptake led to concomitant decreases in net accumulation rates of 15NO3? and of reduced 15N in roots and total 15N in cotyledons. NO3? influx was markedly inhibited by these treatments, while NO3? efflux remained essentially unaffected, or even decreased. It is concluded that the target of the regulation of NO3? uptake by phloemtranslocated amino acids is the influx system.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号