首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   1篇
  国内免费   2篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2012年   9篇
  2011年   6篇
  2010年   10篇
  2009年   6篇
  2008年   12篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
排序方式: 共有92条查询结果,搜索用时 31 毫秒
41.
RNAi is an evolutionary conserved, highly efficient, and cost effective technique of gene silencing. It holds considerable promise and success has been achieved both in vitro and in vivo experiments. However, it is not devoid of undesirable side effects as dsRNA can trigger the immune response and can also cause non-specific off-target gene silencing. In the present study, silencing of myostatin gene, a negative regulator of myogenesis, was evaluated in caprine fetal fibroblasts using three different shRNA constructs. Out of these three constructs, two constructs sh1 and sh2 showed, 72% and 50% reduction (p < 0.05) of myostatin mRNA, respectively. Efficient suppression (42–86%) of MSTN gene (p < 0.05) was achieved even by reducing the concentration of shRNA constructs. The induction of classical interferon stimulated gene (Oligoandenylate Synthetase-1, OAS-1) was studied to analyze the immune response against shRNAs. Notably, a reduction in the potency of shRNAs to induce interferon response was observed at lower concentration for OAS1 gene. The results obtained in the study would be helpful in the abrogation of the bystander effects of RNAi for long term stable expression of anti-MSTN expression constructs in the muscle.  相似文献   
42.
43.
The myostatin gene (MSTN) belongs to the TGF-β superfamily of secreted growth and differentiation factors and is responsible for embryonic and adult skeletal muscle development. In this study, exon 2 of the MSTN gene, which encodes part of the TGF-β pro-peptide, was sequenced in 332 horses of 20 different breeds and compared with the horse MSTN gene sequence deposited in GenBank. The sequences obtained revealed the presence of 11 haplotypes represented by 10 variable nucleotide mutations, eight of them corresponding to amino acid sequence changes. This gene shows a high variability when compared with other genes. This might be an indication that some breeds have the same ancestry but different pressures of selection.  相似文献   
44.
采用Tail-PCR和常规PCR技术首次克隆出斑鳜myostatin基因及其启动子序列。经生物信息学分析发现,斑鳜myostatin基因由3个外显子和2个内含子组成,编码区1131bp,共编码376个氨基酸。斑鳜myostatin启动子区域大小为840bp,存在1个TATAA-box、4个E-box和1个CAAT-box作用元件。利用软件CLUSTALW和MEGA3.1构建14种硬骨鱼的myostatin启动子的系统进化树结果表明:斑鳜同大口黑鲈亲缘关系最近,与鲤鱼和缨野鲮亲缘关系较远,其结果与传统形态学分类中的亲缘关系一致。斑鳜myostatin基因及其启动子克隆与特征分析,将为进一步研究鱼类myostatin基因的表达调控及其功能分析提供参考。  相似文献   
45.
克隆绵羊肌肉生长抑制素(myostatin,MSTN)基因并在大肠杆菌中诱导表达,纯化重组蛋白免疫健康的双峰驼(Bactrian camel),分离其外周血淋巴细胞提取总RNA,利用RT-PCR扩增骆驼重链抗体IgG2、IgG3的可变区(VHH)基因片段,将VHH片段与pCANTAB5E连接后电转入大肠杆菌TG1构建纳米抗体文库。结果显示,纳米抗体文库容量为9.5×105,挑取部分克隆进行测序分析,所获得的纳米抗体文库具有良好的多态性,为进一步筛选绵羊MSTN的高特异性纳米抗体片段奠定了基础。  相似文献   
46.
Myostatin基因,是肌肉生长的负调控因子,通过下调MyoD的表达抑制骨骼肌细胞的分化,但具体机制目前尚未完全清楚。本研究以体外培养的猪骨骼肌卫星细胞为实验材料,利用RNAi 技术,以Smad3为靶基因进行干扰研究,研究干扰前后猪骨骼肌卫星细胞增殖情况的变化以及MyoD、Myostatin基因的表达规律,进一步阐述三个基因间的调控关系。结果表明,Myostatin通过下调MyoD的表达,抑制骨骼肌卫星细胞的分化,但这种抑制作用是受Smad3调节的。  相似文献   
47.
Myostatin is a paracrine/autocrine factor that inhibits muscle growth, and mutations that affect myostatin activity or expression produce dramatic increases in muscle mass in several species. However, at present it is less clear whether differences in myostatin expression or activity exist between species with differing body sizes. Here we demonstrate that mouse muscle expresses far greater levels of myostatin mRNA than cow. In addition, activity of a 1200 bp mouse myostatin promoter construct was significantly greater than that of a 1200 bp cow myostatin promoter construct in C2C12 myotubes. In contrast, activity of reporter constructs flanked by one or both untranslated regions (UTRs) was not significantly different between the two species. Sequence analysis identified a number of promoter regions which differed between larger species (cow, pig, goat, sheep, human) and smaller (mouse, rat), including a TATA-box sequence, a CACCC box, two AT-rich regions (AT1 and AT2), and a palindromic sequence (PAL). We therefore used mutagenesis to alter the mouse sequence for each of these elements to that of the cow. Mutagenesis of the TATA, CACC, and AT1 sequences of the mouse to those of the cow significantly decreased activity of the mouse myostatin promoter compared to the wild type mouse promoter, while mutation of the AT2 and PAL sequences tended to increase promoter activity. Finally, the cow myostatin promoter was less responsive to FoxO signaling than the mouse myostatin promoter. Together these data support the hypothesis that differences in promoter activity between mouse and cow may contribute to differences in expression of the myostatin gene between these species.  相似文献   
48.
The distribution of insulin-like growth factor-I (IGF-I) and myostatin (MSTN) was investigated in sea bass (Dicentrarchus labrax) by real-time polymerase chain reaction (PCR), in situ hybridization (ISH) and immunohistochemistry. Real-time PCR indicated that IGF-I mRNA increased from the second day post-hatching and that this trend became significant from day 4. ISH confirmed a strong IGF-I mRNA expression from the first week post-hatching, with the most abundant expression being detected in the liver of larvae and adults. Real-time PCR also showed that the level of MSTN mRNA increased significantly from day 25. The expression of MSTN mRNA was higher in muscle and almost absent in other anatomical regions in both larvae and adults. Interestingly, the lateral muscle showed a quantitative differential expression of IGF-I and MSTN mRNAs in red and white muscle, depending on the developmental stage examined. IGF-I immunoreactivity was detected in developing intestine at hatching and in skeletal muscle, skin and yolk sac. MSTN immunostaining was evident in several tissues and organs in both larvae and adults. Both IGF-I and MSTN proteins were detected in the liver from day 4 post-hatching and, subsequently, in the kidney and heart muscle from day 10. Our results suggest, on the basis of a combined methodological approach, that IGF-I and MSTN are involved in the regulation of somatic growth in the sea bass. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This research was supported by grants from the Italian Ministero dell’Università e della Ricerca Scientifica e Tecnologica (MIUR) and by the University of Padua (Progetto di Ateneo).  相似文献   
49.
鸡Myostatin基因单核苷酸多态性的群体遗传学分析   总被引:20,自引:0,他引:20  
肌肉生长抑制素是控制骨骼肌生长发育的重要细胞因子,采用PCR-SSCP和测序的方法发现了5个位于Myostatin基因5′-和3′-调控区的单核苷酸多态性位点,对北京油鸡、白耳鸡、石歧杂、矮小黄鸡、小型黄鸡、惠阳胡须鸡、隐性白羽鸡、海兰、AA鸡等不同鸡种的该单核苷酸多态性分析结果表明:Myostatin基因的5′调控区引物P60/P61扩增片段多态性是由3个核苷酸的改变而产生的[分别是G→A(304位)、A→G(322位)、G→(344位)],引物P93/P94扩增片段的多态性是由G→A(167位)突变造成的,引物P117。P118PC扩增片段多态性是由T→C(177位)造成的。3′调控我引物P80/P81扩增片段多态性是由第7263位A突变为T造成的,引物P76/P77扩增片段多态性是由A→G(6935位)造成的。不同鸡种群体遗传学分析表明,5′-调控区引物60/P61扩增片段多态性片段多态性是由A→G(6935位)造成的。不同鸡种群体遗传学分析表明,5′-调控区引物P60/P61扩增片段多态性位点在北京油鸡的基因型频率分布与其他的品种有很大的差异,其BB型频率为0.700,AA基因型频率仅为0.033,而其他鸡种中以A基因优势;对于引物P93/P94,品种间的基因型频率差异极显著(P<0.01),北京油鸡和AA鸡的EE型频率鸡种中以A基因占优势;对于引物P93/P94,品种间的基因型频率差异极显著(P<0.01),北京油鸡和AA鸡的EE型频率低于其他品种,白耳鸡和海兰蛋鸡以EE型为主,其频率高于其他品种;3′-调控区引物P80/P81多态怀位点在9个鸡种中都是等位基因C占优势。引物P76/P77,总体上MM型的频率较低,杂合子MN型的频率较高。  相似文献   
50.
Proteomic analysis of bovine skeletal muscle hypertrophy   总被引:4,自引:0,他引:4  
Myostatin plays a major role in muscle growth and development and animals with disruption of this gene display marked increases in muscle mass. Little is known about muscle physiological adaptations in relation to this muscle hypertrophy. To provide a more comprehensive view, we analyzed bovine muscles from control, heterozygote and homozygote young Belgian blue bulls for myostatin deletion, which results in a normal level of inactive myostatin. Heterozygote and homozygote animals were characterized by a higher proportion of fast-twitch glycolytic fibers in Semitendinosus muscle. Differential proteomic analysis of this muscle was performed using two-dimensional gel electrophoresis followed by mass spectrometry. Thirteen proteins, corresponding to 28 protein spots, were significantly altered in response to the myostatin deletion. The observed changes in protein expression are consistent with an increased fast muscle phenotype, suggesting that myostatin negatively controls mainly fast-twitch glycolytic fiber number. Finally, we demonstrated that differential mRNA splicing of fast troponin T is altered by the loss of myostatin function. The structure of mutually exclusive exon 16 appears predominantly expressed in muscles from heterozygote and homozygote animals. This suggests a role for exon 16 of fast troponin T in the physiological adaptation of the fast muscle phenotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号