首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   653篇
  免费   52篇
  国内免费   4篇
  2024年   1篇
  2023年   10篇
  2022年   16篇
  2021年   38篇
  2020年   31篇
  2019年   43篇
  2018年   40篇
  2017年   35篇
  2016年   17篇
  2015年   31篇
  2014年   74篇
  2013年   90篇
  2012年   72篇
  2011年   36篇
  2010年   13篇
  2009年   22篇
  2008年   30篇
  2007年   23篇
  2006年   21篇
  2005年   12篇
  2004年   7篇
  2003年   11篇
  2002年   12篇
  2001年   3篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
排序方式: 共有709条查询结果,搜索用时 15 毫秒
71.
李传明  王健  陈康  白玲  谢兵 《生物磁学》2011,(19):3697-3699
目的:探讨总结脑血吸虫病与脑肺吸虫病MRI影像特点,更好的指导临床旱期诊断。方法:回顾分析10例脑血吸虫及9例脑肺吸虫的MRI影像特点,总结分析其影像征象及价值。结果:脑血吸虫和肺吸虫病临床表现类似,均以颅内压增高和癫痫为主要变现。MRI扫描脑血吸虫病呈多发结节信号,周围大片水肿,增强均匀或不均匀强化;肺吸虫呈斑片样及囊样信号,周围大片水肿,增强扫描环状及斑絮样强化。结论:脑血吸虫与脑肺吸虫病临床表现类似,但MRI有特定的影像特点,可以用来进行诊断。  相似文献   
72.
Thymus involution is a useful marker of transactivation-mediated side effects in preclinical therapeutic index testing of new anti-inflammatory glucocorticosteroids, and is usually measured post mortem. We have validated the use of MRI for non-invasive in vivo measurement of mouse thymus involution induced by dexamethasone (DEX). Tl-weighted spin echo 7 T images provided satisfactory contrast between thymus and surrounding connective tissue and fat. Increasing doses of DEX caused thymus involution, reflected in MRI volume (87+/-14, 33+/-10, 28+/-6, 16+/-7 microl in dosage groups of Cremophor vehicle, 1, 10 and 30 mg/kg subcutaneous respectively, n=6/group, mean+/-standard deviation) and post mortem wet weight (64+/-12, 33+/-6, 25+/-9, 23+/-8 mg). Correlation between MRI volumes and wet weights was very good (r=0.842). Measuring pre-dose MRI volumes and then assessing DEX effects as post-dose change from baseline produced no statistical advantage relative to considering post-dose MRI thymus volume alone, probably due to variability in pre-dose baseline values compounding post-dose variability. Smaller group sizes were sufficient to achieve a given statistical power using MRI post-dose volume than using wet weight, suggesting a role for MRI in differentiating the effects of compounds which produce similar effects, or in contexts where the use of large groups of animals is impractical or ethically unacceptable.  相似文献   
73.
在做磁共振成像时,根据需要医生应该能够对病人任意的解剖部位以及这个部位的任意方向进行扫描,为此需要得到扫描的中心位置、频率编码方向、相位编码方向等坐标信息。这个过程是比较繁琐的,我们开发出一个定位子系统,使得医生可以通过图形定位的方式来确定这套参数,做到所见即所得。  相似文献   
74.
Methods for the experimental and clinical investigation of cardiac arrhythmias are limited to inferring propagation within the myocardium, from surface measurements, or from electrodes at a few sites within the cardiac wall. Biophysically and anatomically detailed computational models of cardiac tissues offer a powerful way for studying the electrical propagation processes and arrhythmias within the virtual heart. We use virtual tissues to study and visualise the effects of patho- and physiological conditions, and pharmacological interventions on transmural propagation in the virtual ventricular walls. Class III drug actions are quantitatively explained by changes induced in the transmural dispersion of action potential duration. We illustrate the automated construction of a virtual anisotropic ventricle from Diffusion Tensor MRI for individual hearts, and use it to explore mechanisms leading to ventricular fibrillation. The virtual ventricular wall provides an effective tool for exploring, evaluating and visualising processes during the initiation and maintenance of ventricular arrhythmias.  相似文献   
75.
A molecular model is proposed to explain water 1H NMR spin-lattice relaxation at different levels of hydration (NMR titration method) on collagen. A fast proton exchange model is used to identify and characterize protein hydration compartments at three distinct Gibbs free energy levels. The NMR titration method reveals a spectrum of water motions with three well-separated peaks in addition to bulk water that can be uniquely characterized by sequential dehydration. Categorical changes in water motion occur at critical hydration levels h (g water/g collagen) defined by integral multiples N = 1, 4 and 24 times the fundamental hydration value of one water bridge per every three amino acid residues as originally proposed by Ramachandran in 1968. Changes occur at (1) the Ramachandran single water bridge between a positive amide and negative carbonyl group at h1 = 0.0658 g/g, (2) the Berendsen single water chain per cleft at h2 = 0.264 g/g, and (3) full monolayer coverage with six water chains per cleft level at h3 = 1.584 g/g. The NMR titration method is verified by comparison of measured NMR relaxation compartments with molecular hydration compartments predicted from models of collagen structure. NMR titration studies of globular proteins using the hydration model may provide unique insight into the critical contributions of hydration to protein folding.  相似文献   
76.
77.
Mutations in POLG account for one of the most frequent nuclear encoded causes of mitochondrial disorders to date. Individuals harboring POLG mutations exhibit fairly heterogeneous clinical presentations leading to increasing difficulties in classifying these patients into defined clinical phenotypes. This study aims to investigate the molecular basis of a mitochondrial cytopathy in a patient with 3-methylglutaconic aciduria and to expand the clinical phenotype associated with POLG mutations. Clinical, molecular and genetic analyses as well as neurophysiological examinations were carried out for a 23-year-old woman of mixed Caucasian and Latin American ancestry with a history of cataracts diagnosed at age 1 year, she had onset of distal muscle weakness at age 2 years progressing to atrophy and ovarian dysgenesis at puberty. The patient was found to have 3-methylglutaconic acid with normal 3 hydroxyisovaleric acid on urine organic acid analysis. POLG sequencing was done and a heterozygous variant, c.2851T>A (p.Y951N) was found which is predicted to be deleterious. There are limited reports of POLG mutations in individuals with 3-methylglutaconic aciduria. This case report of a young woman with a heterozygous mutation in POLG, presenting with muscle weakness and atrophy at a young age aims to aid clinicians in similar challenging diagnostic situations as well as enhances our understanding of POLG-related disease phenotypes.  相似文献   
78.

Purpose

We investigated the influence of Leptin (LEP) and leptin receptor (LEPR) SNPs on habitual physical activity (PA) and body composition response to a unilateral, upper body resistance training (RT) program.

Methods

European-derived American volunteers (men = 111, women = 131, 23.4 ± 5.4 yr, 24.4 ± 4.6 kg·m− 2) were genotyped for LEP 19 G>A (rs2167270), and LEPR 326 A>G (rs1137100), 668 A>G (rs1137101), 3057 G>A (rs1805096), and 1968 G>C (rs8179183). They completed the Paffenbarger PA Questionnaire. Arm muscle and subcutaneous fat volumes were measured before and after 12 wk of supervised RT with MRI. Multivariate and repeated measures ANCOVA tested differences among phenotypes by genotype and gender with age and body mass index as covariates.

Results

Adults with the LEP 19 GG genotype reported more kcal/wk in vigorous intensity PA (1273.3 ± 176.8, p = 0.017) and sports/recreation (1922.8 ± 226.0, p < 0.04) than A allele carriers (718.0 ± 147.2, 1328.6 ± 188.2, respectively). Those with the LEP 19 GG genotype spent more h/wk in light intensity PA (39.7 ± 1.6) than A allele carriers (35.0 ± 1.4, p = 0.03). In response to RT, adults with the LEPR 668 G allele gained greater arm muscle volume (67,687.05 ± 3186.7 vs. 52,321.87 ± 5125.05 mm3, p = 0.01) and subcutaneous fat volume (10,599.89 ± 3683.57 vs. − 5224.73 ± 5923.98 mm3, p = 0.02) than adults with the LEPR 668 AA genotype, respectively.

Conclusion

LEP19 G>A and LEPR 668 A>G associated with habitual PA and the body composition response to RT. These LEP and LEPR SNPs are located in coding exons likely influencing LEP and LEPR function. Further investigation is needed to confirm our findings and establish mechanisms for LEP and LEPR genotype and PA and body composition associations we observed.  相似文献   
79.
Neuroimaging studies of human cognitive, sensory, and motor processes are usually based on noninvasive techniques such as electroencephalography (EEG), magnetoencephalography or functional magnetic-resonance imaging. These techniques have either inherently low temporal or low spatial resolution, and suffer from low signal-to-noise ratio and/or poor high-frequency sensitivity. Thus, they are suboptimal for exploring the short-lived spatio-temporal dynamics of many of the underlying brain processes. In contrast, the invasive technique of electrocorticography (ECoG) provides brain signals that have an exceptionally high signal-to-noise ratio, less susceptibility to artifacts than EEG, and a high spatial and temporal resolution (i.e., <1 cm/<1 millisecond, respectively). ECoG involves measurement of electrical brain signals using electrodes that are implanted subdurally on the surface of the brain. Recent studies have shown that ECoG amplitudes in certain frequency bands carry substantial information about task-related activity, such as motor execution and planning1, auditory processing2 and visual-spatial attention3. Most of this information is captured in the high gamma range (around 70-110 Hz). Thus, gamma activity has been proposed as a robust and general indicator of local cortical function1-5. ECoG can also reveal functional connectivity and resolve finer task-related spatial-temporal dynamics, thereby advancing our understanding of large-scale cortical processes. It has especially proven useful for advancing brain-computer interfacing (BCI) technology for decoding a user''s intentions to enhance or improve communication6 and control7. Nevertheless, human ECoG data are often hard to obtain because of the risks and limitations of the invasive procedures involved, and the need to record within the constraints of clinical settings. Still, clinical monitoring to localize epileptic foci offers a unique and valuable opportunity to collect human ECoG data. We describe our methods for collecting recording ECoG, and demonstrate how to use these signals for important real-time applications such as clinical mapping and brain-computer interfacing. Our example uses the BCI2000 software platform8,9 and the SIGFRIED10 method, an application for real-time mapping of brain functions. This procedure yields information that clinicians can subsequently use to guide the complex and laborious process of functional mapping by electrical stimulation.

Prerequisites and Planning:

Patients with drug-resistant partial epilepsy may be candidates for resective surgery of an epileptic focus to minimize the frequency of seizures. Prior to resection, the patients undergo monitoring using subdural electrodes for two purposes: first, to localize the epileptic focus, and second, to identify nearby critical brain areas (i.e., eloquent cortex) where resection could result in long-term functional deficits. To implant electrodes, a craniotomy is performed to open the skull. Then, electrode grids and/or strips are placed on the cortex, usually beneath the dura. A typical grid has a set of 8 x 8 platinum-iridium electrodes of 4 mm diameter (2.3 mm exposed surface) embedded in silicon with an inter-electrode distance of 1cm. A strip typically contains 4 or 6 such electrodes in a single line. The locations for these grids/strips are planned by a team of neurologists and neurosurgeons, and are based on previous EEG monitoring, on a structural MRI of the patient''s brain, and on relevant factors of the patient''s history. Continuous recording over a period of 5-12 days serves to localize epileptic foci, and electrical stimulation via the implanted electrodes allows clinicians to map eloquent cortex. At the end of the monitoring period, explantation of the electrodes and therapeutic resection are performed together in one procedure.In addition to its primary clinical purpose, invasive monitoring also provides a unique opportunity to acquire human ECoG data for neuroscientific research. The decision to include a prospective patient in the research is based on the planned location of their electrodes, on the patient''s performance scores on neuropsychological assessments, and on their informed consent, which is predicated on their understanding that participation in research is optional and is not related to their treatment. As with all research involving human subjects, the research protocol must be approved by the hospital''s institutional review board. The decision to perform individual experimental tasks is made day-by-day, and is contingent on the patient''s endurance and willingness to participate. Some or all of the experiments may be prevented by problems with the clinical state of the patient, such as post-operative facial swelling, temporary aphasia, frequent seizures, post-ictal fatigue and confusion, and more general pain or discomfort.At the Epilepsy Monitoring Unit at Albany Medical Center in Albany, New York, clinical monitoring is implemented around the clock using a 192-channel Nihon-Kohden Neurofax monitoring system. Research recordings are made in collaboration with the Wadsworth Center of the New York State Department of Health in Albany. Signals from the ECoG electrodes are fed simultaneously to the research and the clinical systems via splitter connectors. To ensure that the clinical and research systems do not interfere with each other, the two systems typically use separate grounds. In fact, an epidural strip of electrodes is sometimes implanted to provide a ground for the clinical system. Whether research or clinical recording system, the grounding electrode is chosen to be distant from the predicted epileptic focus and from cortical areas of interest for the research. Our research system consists of eight synchronized 16-channel g.USBamp amplifier/digitizer units (g.tec, Graz, Austria). These were chosen because they are safety-rated and FDA-approved for invasive recordings, they have a very low noise-floor in the high-frequency range in which the signals of interest are found, and they come with an SDK that allows them to be integrated with custom-written research software. In order to capture the high-gamma signal accurately, we acquire signals at 1200Hz sampling rate-considerably higher than that of the typical EEG experiment or that of many clinical monitoring systems. A built-in low-pass filter automatically prevents aliasing of signals higher than the digitizer can capture. The patient''s eye gaze is tracked using a monitor with a built-in Tobii T-60 eye-tracking system (Tobii Tech., Stockholm, Sweden). Additional accessories such as joystick, bluetooth Wiimote (Nintendo Co.), data-glove (5th Dimension Technologies), keyboard, microphone, headphones, or video camera are connected depending on the requirements of the particular experiment.Data collection, stimulus presentation, synchronization with the different input/output accessories, and real-time analysis and visualization are accomplished using our BCI2000 software8,9. BCI2000 is a freely available general-purpose software system for real-time biosignal data acquisition, processing and feedback. It includes an array of pre-built modules that can be flexibly configured for many different purposes, and that can be extended by researchers'' own code in C++, MATLAB or Python. BCI2000 consists of four modules that communicate with each other via a network-capable protocol: a Source module that handles the acquisition of brain signals from one of 19 different hardware systems from different manufacturers; a Signal Processing module that extracts relevant ECoG features and translates them into output signals; an Application module that delivers stimuli and feedback to the subject; and the Operator module that provides a graphical interface to the investigator.A number of different experiments may be conducted with any given patient. The priority of experiments will be determined by the location of the particular patient''s electrodes. However, we usually begin our experimentation using the SIGFRIED (SIGnal modeling For Realtime Identification and Event Detection) mapping method, which detects and displays significant task-related activity in real time. The resulting functional map allows us to further tailor subsequent experimental protocols and may also prove as a useful starting point for traditional mapping by electrocortical stimulation (ECS).Although ECS mapping remains the gold standard for predicting the clinical outcome of resection, the process of ECS mapping is time consuming and also has other problems, such as after-discharges or seizures. Thus, a passive functional mapping technique may prove valuable in providing an initial estimate of the locus of eloquent cortex, which may then be confirmed and refined by ECS. The results from our passive SIGFRIED mapping technique have been shown to exhibit substantial concurrence with the results derived using ECS mapping10.The protocol described in this paper establishes a general methodology for gathering human ECoG data, before proceeding to illustrate how experiments can be initiated using the BCI2000 software platform. Finally, as a specific example, we describe how to perform passive functional mapping using the BCI2000-based SIGFRIED system.  相似文献   
80.
目的:探讨多系统萎缩(multiple system atrophy,MSA)患者的临床表现及神经影像学新特征(脑桥"十字征"和"壳核裂隙征")在MSA早期诊断中的临床意义。方法:回顾性分析21例临床诊断为多系统萎缩(MSA)患者的临床表现和头部MRI资料。结果:21例MSA患者中,Shy-Drager综合征(MSA-A)9例,早期临床表现为体位性低血压,泌尿生殖功能障碍,头部MRI检查脑桥"壳核裂隙征"和"十字征"为Ⅰ期;橄榄体脑桥小脑萎缩(MSA-C)5例,3例发病后1年头部MRI脑桥"十字征"达Ⅱ期;"壳核裂隙征"为Ⅰ期,2例发病后3年头部MRI脑桥"十字征"达Ⅳ期。黑质纹状体变性(MSA-P)7例:早期临床均有运动迟缓、震颤等表现,3例发病后1年脑桥"十字征"Ⅰ期,"壳核裂隙征"Ⅲ期;3例发病后2年脑桥"十字征"Ⅰ期,"壳核裂隙征"Ⅰ期;另1例发病后9月脑桥"十字征"Ⅰ期",壳核裂隙征"Ⅱ期。结论:认为临床表现与头部MRI检查显示的新的影像学特征结合有助于MSA早期诊断。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号