首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9080篇
  免费   640篇
  国内免费   1502篇
  2024年   23篇
  2023年   167篇
  2022年   276篇
  2021年   366篇
  2020年   401篇
  2019年   376篇
  2018年   330篇
  2017年   302篇
  2016年   345篇
  2015年   292篇
  2014年   432篇
  2013年   756篇
  2012年   397篇
  2011年   460篇
  2010年   335篇
  2009年   543篇
  2008年   554篇
  2007年   463篇
  2006年   429篇
  2005年   441篇
  2004年   298篇
  2003年   278篇
  2002年   265篇
  2001年   204篇
  2000年   174篇
  1999年   172篇
  1998年   143篇
  1997年   173篇
  1996年   160篇
  1995年   164篇
  1994年   174篇
  1993年   156篇
  1992年   125篇
  1991年   109篇
  1990年   126篇
  1989年   104篇
  1988年   67篇
  1987年   67篇
  1986年   73篇
  1985年   108篇
  1984年   90篇
  1983年   43篇
  1982年   53篇
  1981年   37篇
  1980年   30篇
  1979年   37篇
  1978年   23篇
  1977年   39篇
  1976年   21篇
  1975年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Three species of anoxygenic phototrophic heliobacteria, Heliobacterium chlorum, Heliobacterium gestii, and Heliobacillus mobilis, were studied for comparative nitrogen-fixing abilities and regulation of nitrogenase. Significant nitrogenase activity (acetylene reduction) was detected in all species grown photoheterotrophically on N2, although cells of H. mobilis consistently had higher nitrogenase activity than did cells of either H. chlorum or H. gestii. Nitrogen-fixing cultures of all three species of heliobacteria were subject to switch-off of nitrogenase activity by ammonia; glutamine also served to switch-off nitrogenase activity but only in cells of H. mobilis and H. gestii. Placing photosynthetically grown heliobacterial cultures in darkness also served to switch-off nitrogenase activity. Dark-mediated switch-off was complete in lactate-grown heliobacteria but in pyruvate-grown cells substantial rates of nitrogenase activity continued in darkness. In all heliobacteria examined ammonia was assimilated primarily through the glutamine synthetase/glutamate synthase (GS/GOGAT) pathway although significant levels of alanine dehydrogenase were present in extracts of cells of H. gestii, but not in the other species. The results suggest that heliobacteria, like phototrophic purple bacteria, are active N2-fixing bacteria and that despite their gram-positive phylogenetic roots, heliobacteria retain the capacity to control nitrogenase activity by a switch-off type of mechanism. Because of their ability to fix N2 both photosynthetically and in darkness, it is possible that heliobacteria are significant contributors of fixed nitrogen in their paddy soil habitat.  相似文献   
72.
The symbiotic bacterium strain, SK-1 isolated from Steinernema kushidai, a new species of entomopathogenic nematode, was compared with other strains of Xenorhabdus species. Like other Xenorhabdus nematophilus strains, this new strain is gram-negative, facultatively anaerobic, peritrichously flagellated rod and negative for catalase and nitrate reduction. It can be distinguished from the other Xenorhabdus spp. by differences in reactions to phenylalanine deaminase, no acid production from myo-inositol and utilizations of inosine, dl-malate, formate and methanol. Intra-haemocoelic injection of actual cells or liquid culture supernatant into sixth instar larvae of Spodoptera litura for either Phase I or II variants were not pathogenic. Other strains of X. nematophilus showed pathogenicity for whole cell injections. The supernatants of strain D-1 and ATCC 19061, which are symbionts of Steinernema carpocapsae were pathogenic, however pathogenicity decreased and then terminated by increases in temperature.  相似文献   
73.
Rhodobacter capsulatus strains E1F1 and B10 and Rhodobacter sphaeroides DSM 158 did not use hydroxylamine as nitrogen source for growth but metabolized it mainly through the glutamine synthetase reaction. Hydroxylamine had a high toxicity for cells growing either under phototrophic or dark-aerobic conditions. l-methionine-d,l-sulfoximine partially inhibited hydroxylamine uptake and increased the inhibition time of nitrogenase activity by this nitrogen compound. Nitric oxide was also a powerful inhibitor of nitrogenase in intact cells of R. capsulatus. Since low amounts of NO were produced from hydroxylamine, short-term inhibition of nitrogenase in the presence of this compound could be mediated in vivo by nitric oxide.Abbreviations GS glutamine synthetase - MSX l-methionine-d,l-sulfoximine - MTA mixed alkyltrimethylammonium bromide  相似文献   
74.
Cells of the purple non-sulphur bacterium Rhodobacter sphaeroides express a high-affinity K+ uptake system when grown in media with low K+ concentrations. Antibodies againts the catalytic KdpB protein or the whole KdpABC complex of Escherichia coli crossreact with a 70.0 kDa R. sphaeroides protein that was expressed only in cells grown in media with low K+ concentrations. In membranes derived from R. sphaeroides cells grown with low K+ concentrations (induced cells), a high ATPase activity could be detected when assayed in Tris-HCl pH 8.0 containing 1 mM MgSO4. This ATPase activity increased upon addition of 1 mM KCl from 166 to 289 mol ATP hydrolysed x min-1 x g protein-1 (1.7-fold stimulation). The K+-stimulated ATPase activity was inhibited approximately 93% by 0.5 mM vanadate but hardly by N,N-dicyclohexylcarbo-diimide (DCCD). These results indicate that the inducible K+-ATPase in R. sphaeroides resembles the Kdp K+-translocating ATPase of Escherichia coli. This Kdp-like transport system is also expressed in R. capsulatus and Rhodospirillum rubrum during growth in media with low K+ concentrations suggesting a wide distribution of this transport system among phototrophic bacteria.Abbreviations electrical potential difference across the cytoplasmic membrane - pH pH difference across the cytoplasmic membrane - BSA bovine serum albumine - PAGE polyacrylamide gel electrophoresis - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - PMSF phenyl-methyl-sulfonyl fluoride - DCCD N,N-dicyclohexylcarbodiimide - AIB 2--aminoisobutyric acid - TMG methyl--d-thiogalactopyranoside  相似文献   
75.
Five-hundred-and-six fresh isolates of rumen bacteria were tested for their ability to hydrolyse the synthetic substrate for dipeptidyl aminopeptidase type I, GlyArg-4-methoxy-2-naphthylamide (GlyArg-MNA), using a gel overlay technique. Twelve positive isolates were small Gram-negative rods which resembled Bacteroides ruminicola in their biochemical and morphological properties. SDS-PAGE of whole cell extracts indicated that two were similar to B. ruminicola strain B14, six resembled B. ruminicola strain M384, and four were similar to B. ruminicola GA33. All hydrolysed GlyArg-MNA, Ala2 and Ala5, and showed no activity against Leu-MNA. Ala3 and Ala2, but no Ala4, was produced from Ala5. The different groups had different, distinctive activity profiles. The two remaining positive isolates were Lactobacillus spp. with an exceptionally high Leu-MNA activity. It was concluded that, although different strains may only be distantly related, B. ruminicola forms the most important group of bacteria in the rumen to possess a dipeptidyl aminopeptidase type I activity.  相似文献   
76.
Douglas fir (Pseudotsuga menziesii) seedlings in two bare-root forest nurseries were inoculated with the ectomycorrhizal fungus Laccaria laccata, together or not with one of five mycorrhization helper bacteria isolated from L. laccata sporocarps or mycorrhizas and previously selected by in vitro and glasshouse screenings. With the most efficient MHB isolates, when compared to the control with no bacteria, the percent of mycorrhizal short roots was increased from 60 to 90 or from 80 to 100, depending on the nursery, with inoculation doses as low as 106 living cells per m2. A dual inoculum made of calcium alginate beads containing the two microorganisms appears to be a valuable technique for increasing the efficiency of ectomycorrhizal inoculation of planting stocks in forest nurseries.  相似文献   
77.
Two Rhizobium strains (WU1001 and WU1008) were isolated from nodules of Acacia redolens growing in saline areas of south-west Australia, and two strains selected from the University of Western Australia's culture collection (WU429 isolated from A. saligna and WU433 from A. cyclops). The growth of each in buffered, yeast extract mannitol broth culture was largely unaffected by salt up to 300 mM NaCl. A slight increase in lag time occurred at concentrations of 120 mM NaCl and above, but cell number at the static phase was not affected. Each of the four Rhizobium strains tested accumulated Na+ but showed decreasing levels of sugar with increasing salt in the external medium. Amino acid levels also increased, in some cases by more than tenfold. However, the relative proportion of each remained fairly constant in the bacteria, irrespective of salt treatment. Only trace quantities of proline were detected and there was no increase in this amino acid with salt. Acidic amino acids (glutamate and aspartate) remained as a constant proportion.Rhizobium strains WU429, WU1001 and WU1008 produced effective nodules on both A. cyclops and A. redolens grown in sand with up to 80 mM NaCl (added in nutrient solutions free of nitrogen). Strain WU433 was highly infective on both Acacia species tested at low salt concentrations (2–40 mM NaCl), but infection was sensitive to salt levels at 120 mM NaCl and above. Nodules formed with strain WU433 were, however, ineffective on both A. redolens and on A. cyclops and showed nil or negligible rates of acetylene reduction at all salt concentrations. Strains WU429, WU1001 and WU1008 in combination with a highly salt-tolerant provenance of A. redolens formed symbioses which did not vary significantly in nodule number and mass, specific nodule activity or total N content irrespective of salt level up to 160 mM NaCl. On a more salt sensitive provenance of A. redolens and on A. cyclops the infectivity and effectivity of the Rhizobium strains tested usually decreased as the external salt concentration increased. These data are interpreted to indicate that tolerance of the legume host was the most important factor determining the success of compatible Rhizobium strains in forming effective symbioses under conditions of high soil salinity.  相似文献   
78.
The NADH-quinone oxidoreductases of the bacterial respiratory chain could be divided in two groups depending on whether they bear an energy-coupling site. Those enzymes that bear the coupling site are designated as NADH dehydrogenase 1 (NDH-1) and those that do not as NADH dehydrogenase 2 (NDH-2). All members of the NDH-1 group analyzed to date are multiple polypeptide enzymes and contain noncovalently bound FMN and iron-sulfur clusters as prosthetic groups. The NADH-ubiquinone-1 reductase activities of NDH-1 are inhibited by rotenone, capsaicin, and dicyclohexylcarbodiimide. The NDH-2 enzymes are generally single polypeptides and contain non-covalently bound FAD and no iron-sulfur clusters. The enzymatic activities of the NDH-2 are not affected by the above inhibitors for NDH-1. Recently, it has been found that both of these types of the NADH-quinone oxidoreductase are present in a single strain of bacteria. The significance of the occurrence of these two types of enzymes in a single organism has been discussed in this review.  相似文献   
79.
Microbial growth on carbon monoxide   总被引:14,自引:0,他引:14  
The utilization of carbon monoxide as energy and/or carbon source by different physiological groups of bacteria is described and compared. Utilitarian CO oxidation which is coupled to the generation of energy for growth is achieved by aerobic and anaerobic eu- and archaebacteria. They belong to the physiological groups of aerobic carboxidotrophic, facultatively anaerobic phototrophic, and anaerobic acetogenic, methanogenic or sulfate-reducing bacteria. The key enzyme in CO oxidation is CO dehydrogenase which is a molybdo iron-sulfur flavoprotein in aerobic CO-oxidizing bacteria and a nickel-containing iron-sulfur protein in anaerobic ones. In carboxidotrophic and phototrophic bacteria, the CO-born CO2 is fixed by ribulose bisphosphate carboxylase in the reductive pentose phosphate cycle. In acetogenic, methanogenic, and probably in sulfate-reducing bacteria, CODH/acetyl-CoA synthase directly incorporates CO into acetyl-CoA.In plasmid-harbouring carboxidotrophic bacteria, CO dehydrogenase as well as enzymes involved in CO2 fixation or hydrogen utilization are plasmid-encoded. Structural genes encoding CO dehydrogenase were cloned from carboxidotrophic, acetogenic and methanogenic bacteria. Although they are clustered in each case, they are genetically distinct.Soil is a most important biological sink for CO in nature. While the physiological microbial groups capable of CO oxidation are well known, the type and nature of the microorganisms actually representing this sink are still enigmatic. We also tried to summarize the little information available on the nutritional and physicochemical requirements determining the sink strength. Because CO is highly toxic to respiring organisms even in low concentrations, the function of microbial activities in the global CO cycle is critical.  相似文献   
80.
Chlorinated methanes are important environmental pollutants, which can be metabolized by bacteria. The biotransformation of chlorinated methanes by bacteria has been shown to be due either to gratuitous metabolism (cometabolism) or their use as a source of carbon and energy. The reactions which result in carbon-halogen bond cleavage include substitutive, reductive, oxygenative, and gem-elimination mechanisms. Certain methylotrophic bacteria can use dichloromethane as a source of carbon and energy. Dichloromethane dehalogenase catalyzes the first substitutive reaction in this metabolism. The enzyme shows a 1010-fold rate enhancement over the reaction of the bisulfide anion with dichloromethane in water. Pseudomonas putida G786 synthesizes cytochrome P-450CAM which catalyzes the gratuitous reduction of chlorinated methanes. These studies with purified enzymes are beginning to reveal more detailed mechanistic features of bacterial chlorinated methane metabolism.Abbreviations DNA deoxyribonucleic acid - kcat catalytic first order rate constant for an enzyme catalyzed reaction - KM Michaelis constant for an enzyme catalyzed reaction - MNDO modified neglect of diatomic overlap - PIMA pattern induced multialignment - DCMD dichloromethane dehalogenase  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号