首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   5篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   3篇
  2018年   6篇
  2017年   4篇
  2016年   1篇
  2015年   6篇
  2014年   12篇
  2013年   23篇
  2012年   10篇
  2011年   14篇
  2010年   8篇
  2009年   14篇
  2008年   11篇
  2007年   14篇
  2006年   13篇
  2005年   11篇
  2004年   11篇
  2003年   11篇
  2002年   9篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1971年   1篇
排序方式: 共有238条查询结果,搜索用时 406 毫秒
31.
Extracellular nicotinamide adenine dinucleotide (NAD+) is known to increase the intracellular calcium concentration [Ca2+]i in different cell types and by various mechanisms. Here we show that NAD+ triggers a transient rise in [Ca2+]i in human monocytes activated with lipopolysaccharide (LPS), which is caused by a release of Ca2+ from IP3-responsive intracellular stores and an influx of extracellular Ca2+. By the use of P2 receptor-selective agonists and antagonists we demonstrate that P2 receptors play a role in the NAD+-induced calcium response in activated monocytes. Of the two subclasses of P2 receptors (P2X and P2Y) the P2Y receptors were considered the most likely candidates, since they share calcium signaling properties with NAD+. The identification of P2Y1 and P2Y11 as receptor subtypes responsible for the NAD+-triggered increase in [Ca2+]i was supported by several lines of evidence. First, specific P2Y1 and P2Y11 receptor antagonists inhibited the NAD+-induced increase in [Ca2+]i. Second, NAD+ was shown to potently induce calcium signals in cells transfected with either subtype, whereas untransfected cells were unresponsive. Third, NAD+ caused an increase in [cAMP]i, prevented by the P2Y11 receptor-specific antagonist NF157.  相似文献   
32.
We investigated whether thrombin, the final activator of coagulation cascade, regulates expression of matrix metalloproteinases (MMP)-9 in human monocytes.We show that thrombin stimulation induced MMP-9 secretion of monocytes dose- and time-dependently as revealed by gelatin zymography. Real-time RT-PCR and Western blot analysis demonstrated that thrombin up-regulated mRNA and protein levels of MMP-9. Pre-incubation with anti-protease-activated receptor (PAR)-1 or anti-PAR-3 antibody partially inhibited the thrombin-induced MMP-9 secretion. Simultaneous incubation with both showed synergistic effect, indicating the involvement of both receptors in this thrombin effect. BAPTA, a Ca2+ chelator, abolished the thrombin-induced MMP-9 secretion, indicating the requirement of Ca2+ mobilization in this process. Inhibition of thrombin-induced MMP-9 secretion by either MEK inhibitor or p38 kinase inhibitor revealed that the thrombin effect was mediated by both ERK1/2 and p38 pathways. The activation of NFκB by thrombin as demonstrated by electromobility shift assay was also shown to be critical to the thrombin-induced MMP-9 up-regulation.  相似文献   
33.
Recruitment of circulating monocytes into the vasculature and release of reactive oxygen species (ROS) promote atherogenesis. Rac1-GTPase is an essential component of the superoxide-producing NADPH-oxidase complex. Estrogens inhibit production of vascular reactive oxygen species.Angiotensin II as well as overexpression of the constitutively active mutant RacL61 increased ROS production in monocytes. AngII-mediated ROS release was completely inhibited by overexpression of the dominant negative mutant RacN17 or treatment with 17β-estradiol. 17β-Estradiol reduced Rac1-expression concentration- and time-dependently and decreased basal, as well as AngII-induced Rac1 activity. The effects of 17β-estradiol were receptor-mediated. In vivo, down-regulation of Rac1 by 17β-estradiol was observed in human mononuclear cells of women with elevated 17β-estradiol levels after controlled ovarian hyperstimulation.In summary, the data show that down-regulation of Rac1-GTPase contributes to the inhibition of angiotensin II-mediated superoxide release by 17β-estradiol in monocytes.  相似文献   
34.
Immunodeficiency is a severe side effect of radiation therapy, notably at high radiation doses. It may also impact healthy individuals exposed to environmental ionizing radiation. Although it is believed to result from cytotoxicity of bone marrow cells and of immunocompetent cells in the peripheral blood, the response of distinct bone marrow and blood cell subpopulations following exposure to ionizing radiation is not yet fully explored. In this review, we aim to compile the knowledge on radiation sensitivity of immunocompetent cells and to summarize data from bone marrow and peripheral blood cells derived from mouse and human origin. In addition, we address the radiation response of blood stem and progenitor cells. The data indicate that stem cells, T helper cells, cytotoxic T cells, monocytes, neutrophils and, at a high degree, B cells display a radiation sensitive phenotype while regulatory T cells, macrophages, dendritic cells and natural killer cells appear to be more radioresistant. No conclusive data are available for basophil and eosinophil granulocytes. Erythrocytes and thrombocytes, but not their precursors, seem to be highly radioresistant. Overall, the data indicate considerable differences in radiosensitivity of bone marrow and blood normal and malignant cell populations, which are discussed in the light of differential radiation responses resulting in hematotoxicity and related clinical implications.  相似文献   
35.
As a subtype of leukocytes and progenitors of macrophages, monocytes are involved in many important processes of organisms and are often the subject of various fields in biomedical science. The method described below is a simple and effective way to isolate murine monocytes from heterogeneous bone marrow.Bone marrow from the femur and tibia of Balb/c mice is harvested by flushing with phosphate buffered saline (PBS). Cell suspension is supplemented with macrophage-colony stimulating factor (M-CSF) and cultured on ultra-low attachment surfaces to avoid adhesion-triggered differentiation of monocytes. The properties and differentiation of monocytes are characterized at various intervals. Fluorescence activated cell sorting (FACS), with markers like CD11b, CD115, and F4/80, is used for phenotyping. At the end of cultivation, the suspension consists of 45%± 12% monocytes. By removing adhesive macrophages, the purity can be raised up to 86%± 6%. After the isolation, monocytes can be utilized in various ways, and one of the most effective and common methods for in vivo delivery is intravenous tail vein injection. This technique of isolation and application is important for mouse model studies, especially in the fields of inflammation or immunology. Monocytes can also be used therapeutically in mouse disease models.  相似文献   
36.
Monocyte/macrophage accumulation plays a critical role during progression of cardiovascular diseases, such as atherosclerosis. Our previous studies demonstrated that retrovirally mediated expression of the versican V3 splice variant (V3) by arterial smooth muscle cells (ASMCs) decreases monocyte adhesion in vitro and macrophage accumulation in a model of lipid-induced neointimal formation in vivo. We now demonstrate that V3-expressing ASMCs resist monocyte adhesion by altering the composition of the microenvironment surrounding the cells by affecting multiple signaling pathways. Reduction of monocyte adhesion to V3-expressing ASMCs is due to the generation of an extracellular matrix enriched in elastic fibers and depleted in hyaluronan, and reduction of the proinflammatory cell surface vascular cell adhesion molecule 1 (VCAM1). Blocking these changes reverses the protective effect of V3 on monocyte adhesion. The enhanced elastogenesis induced by V3 expression is mediated by TGFβ signaling, whereas the reduction in hyaluronan cable formation induced by V3 expression is mediated by the blockade of epidermal growth factor receptor and NFκB activation pathways. In addition, expression of V3 by ASMCs induced a marked decrease in NFκB-responsive proinflammatory cell surface molecules that mediate monocyte adhesion, such as VCAM1. Overall, these results indicate that V3 expression by ASMCs creates a microenvironment resistant to monocyte adhesion via differentially regulating multiple signaling pathways.  相似文献   
37.
Summary Tritiated thymidine autoradiography was used to measure cellular proliferation after ischemic injury in gerbil brain. Gerbils were subjected to bilateral occlusion of the common carotid arteries which resulted in areas of necrosis, or infarcts, in the posterior thalamus or midbrain. From 12 h to 10 days following the ischemia, gerbils were injected with 3H thymidine, sacrificed 4 h later, and the brains sectioned. In order to identify astrocytes and monocytes/macrophages, immunocytochemistry was performed prior to autoradiography, using antisera against glial fibrillary acidic protein and endothelial-monocyte reticuloendothelial antigen, respectively. Immunocytochemistry was also used to visualize microvessel laminin, myelin, and leakage of serum albumin. Lastly, a histochemical procedure for acid phosphatase activity was employed to verify cellular phagocytic activity in the wound. A reproducible sequence of reactions took place during the first 10 days after ischemia. Early changes included leakage of albumin and myelin breakdown, followed by arrival of monocytes at 2 days and their differentiation into macrophages by 5 days. These cells exhibited intense proliferation from 2 to 6 days post-ischemia. Microvessel endothelial cells were maximally labeled at 4 days post-ischemia. Hypertrophied astrocytes were apparent at 2 days and proliferated from 3 to 7 days post-ischemia, and by 10 days the wound was replaced by a glial scar.  相似文献   
38.
Chlamydia trachomatis is an obligate intracellular bacterium that causes severe infections, which can lead to infertility and ectopic pregnancy. Although both innate and adaptive immune responses are elicited during chlamydial infection the bacterium succeeds to evade host defense mechanisms establishing chronic infections. Thus, studying the host–pathogen interaction during chlamydial infection is of importance to understand how C. trachomatis can cause chronic infections. Both the complement system and monocytes play essential roles in anti-bacterial defense, and, therefore, we investigated the interaction between the complement system and the human pathogens C. trachomatis D and L2.Complement competent serum facilitated rapid uptake of both chlamydial serovars into monocytes. Using immunoelectron microscopy, we showed that products of complement C3 were loosely deposited on the bacterial surface in complement competent serum and further characterization demonstrated that the deposited C3 product was the opsonin iC3b. Using C3-depleted serum we confirmed that complement C3 facilitates rapid uptake of chlamydiae into monocytes in complement competent serum. Complement facilitated uptake did not influence intracellular survival of C. trachomatis or C. trachomatis-induced cytokine secretion. Hence, C. trachomatis D and L2 activate the complement system leading to chlamydial opsonization by iC3b and subsequent phagocytosis, activation and bacterial elimination by human monocytes.  相似文献   
39.
40.
急性肾损伤(Acute kidney injury, AKI)是一个日益严重的全球性健康问题,然而目前尚无预防AKI或促进AKI恢复的有效的治疗方法,寻找促进肾小管修复、阻止肾纤维化进展的有效治疗靶点与策略已迫在眉睫。巨噬细胞是具有吞噬功能的重要固有免疫细胞,具有高度的起源异质性和功能异质性,在组织发育与稳态、宿主防御、组织损伤与修复以及纤维化等多种生理病理过程中扮演着复杂的角色。特别的,在AKI损伤与修复的不同阶段巨噬细胞发生动态变化并呈现高度多样性。本文就巨噬细胞在肾损伤及修复过程中作用及机制的研究进展作一综述,以期为寻找AKI治疗靶点、制定AKI治疗策略提供新的思路。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号