首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   5篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   3篇
  2018年   6篇
  2017年   4篇
  2016年   1篇
  2015年   6篇
  2014年   12篇
  2013年   23篇
  2012年   10篇
  2011年   14篇
  2010年   8篇
  2009年   14篇
  2008年   11篇
  2007年   14篇
  2006年   13篇
  2005年   11篇
  2004年   11篇
  2003年   11篇
  2002年   9篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1971年   1篇
排序方式: 共有238条查询结果,搜索用时 15 毫秒
11.
12.
Aggressive treatment with high‐dose atorvastatin reduces more effectively the incidence of cardiovascular events than moderate statin therapy. The mechanism of this benefit has not been fully elucidated. In order to know the potential effects of statin treatment on the protein expression of circulating monocytes in acute coronary syndrome (ACS) patients, a proteomic analysis of these cells was carried out by 2‐DE and MS. Twenty‐five patients with non‐ST‐elevation acute coronary syndrome (NSTEACS) were randomized, the fourth day after admission, to receive ATV 80 mg/dL (n = 14) or conventional treatment (CT) (n = 11), for two months. Blood was withdrawn at the end of the treatment, and monocytes were extracted for proteomic analysis and their protein expression patterns determined. Age, sex, total cholesterol, LDL, HDL, triglycerides, body mass index, presence of hypertension, diabetes, and smoking status were not significantly different between the two groups of patients. The expression of 20 proteins was modified by intensive ATV. Among the most relevant results stand out the normalization by intensive ATV treatment of the expression of proteins that modulate inflammation and thrombosis such as protein disulfide isomerase ER60 (PDI), Annexin I, and prohibitin, or that have other protective effects as HSP‐70. Thus, this approach shed light at the molecular level of the beneficial mechanisms of anti‐atherothrombotic drugs.  相似文献   
13.
Rheumatoid arthritis (RA) is a chronic arthritic condition that can lead to deformities and disabilities. Interleukin-18 (IL-18) is a proinflammatory cytokine known to play a role in the acute and chronic inflammatory phases of RA. IL-18 binding protein is the natural antagonist of IL-18 protein. We aim to identify the effect of HLA-DRB1*04 gene polymorphisms on IL-18 and IL-18BP gene expressions profiles as well as the time-course profiles following in vitro stimulation with mitogens. Peripheral blood mononuclear cells from 16 RA patients and 21 healthy controls were cultured for 1, 4, 8, 12, 24, 48 and 72 h following stimulation with either LPS or PHA. mRNA expression of IL-18 and IL 18BP were determined by quantitative real-time PCR using a comparative Ct (threshold cycle) method. IL-18 levels in supernatants were measured by enzyme-linked immunosorbent assay. Basal mRNA (4.5-fold) and protein levels of IL-18 were increased and IL-18BP mRNA expression was decreased (8-fold) in RA patients when compared to controls. Similarly, increased IL-18 levels were observed in active RA patients, whereas IL-18BP expression was increased in inactive patients. There was an increase in mRNA and protein levels of IL-18 in RA patients that peaked at 4 h and 8 h respectively following LPS stimulation. A similar profile was observed for IL-18BP; however, the expression level was higher in controls than RA patients. Persistent high production of IL-18 in RA is associated with disease progression and IL-18 BP seems to inhibit this activity.  相似文献   
14.
We compared the kinetics of activation and antimicrobial activities of MAPK-p38 and MAPK-ERK in bovine monocytes infected with Mycobacterium avium subsp. paratuberculosis (MAP) and Mycobacterium avium subsp. avium (Maa). Monocytes were incubated with MAP or Maa organisms with or without a specific inhibitor of the MAPK-p38 pathway (SB203580), and MAPK phosphorylation and antimicrobial functions of monocytes were evaluated. At early time points MAPK-p38 phosphorylation was greater in MAP-infected bovine monocytes than in Maa-infected monocytes. At later time points MAPK-p38 phosphorylation by both organisms was similar. MAPKp38 phosphorylation in MAP-infected monocytes was similar to negative control cells, whereas in Maa-infected this activation remained greater than negative control cells. Increase phosphorylation MAPK-ERK was similar at all time points for both organisms. Bovine monocytes had minimal capacity to kill MAP organisms, to acidify MAP-containing phagosomes, or to form phagolysosome. Alternatively, bovine monocytes were able to kill Maa organisms. Addition of SB203580 to monocyte cultures increased phagosome acidification, phagolysosome formation, and killing of MAP and Maa organisms. Taken together these data indicate that early transient activation of MAPK-p38 in bovine mononuclear phagocytes by MAP organisms may be a key mechanism involved in the capacity of MAP to survive in bovine monocytes.  相似文献   
15.
16.
Eotaxin selectively binds CC chemokine receptor (CCR) 3, whereas monocyte chemotactic protein (MCP)-3 binds CCR1, CCR2, and CCR3. To identify the functional determinants of the chemokines, we generated four reciprocal chimeric chemokines-M10E9, M22E21, E8M11, and E20M23-by shuffling the N-terminus and N-loop of eotaxin and MCP-3. M22E21 and E8M11, which shared the N-loop from MCP-3, bound to monocytes with high affinity, and activated monocytes. In contrast, M10E9 and E20M23, which lacked the N-loop, failed to bind and transduce monocyte responses, identifying the N-loop of MCP-3 as the selectivity determinant for CCR1/CCR2. A BIAcore assay with an N-terminal peptide of CCR3 (residues 1-35) revealed that all chimeras except E20M23 exhibited varying degrees of binding affinity with commensurate chemotaxis activity of eosinophils. Surprisingly, E20M23 could neither bind the CCR3 peptide nor activate eosinophils, despite having both N-terminal motifs from eotaxin. These results suggest that the two N-terminal motifs of eotaxin must cooperate with other regions to successfully bind and activate CCR3.  相似文献   
17.
We previously observed that the respiratory burst of human monocytes (THP-1 cell line) triggered by phorbol myristate acetate was strongly enhanced by a priming of the cells by Chlamydia pneumoniae [Biochem. Biophys. Res. Commun. 287 (2001) 781]. We describe here the modifications of the responses of Chlamydia-primed THP-1 cells to hydrocortisone (HCT) and methylprednisolone (MPL). HCT and MPL inhibited the production of the cytokines TNFα and IL-8. But HCT, which inhibited the respiratory burst in LPS-primed monocytes, paradoxically stimulated the phenomenon in Chlamydia-primed cells; MPL exerted no significant effect. Both glucocorticoids did not significantly modify the triggering effect of Chlamydia on NF-κB binding activity. On the expression of p22phox, a protein subunit of the NADPH oxidase, HCT had an increasing and MPL a decreasing effect. Glucocorticoids thus had unexpected effects on the inflammatory response of Chlamydia-primed monocytes.  相似文献   
18.
Transendothelial leukocyte migration is a major aspect of the innate immune response. It is essential in repair and regeneration of damaged tissues and is regulated by multiple cell adhesion molecules (CAMs) including members of the immunoglobulin (Ig) superfamily. Activated leukocyte cell adhesion molecule (ALCAM/CD166) is an Ig CAM expressed by activated monocytes and endothelial cells. Hitherto, the functional relevance of ALCAM expression by endothelial cells and activated monocytes remained unknown. In this report, we demonstrate soluble recombinant human ALCAM significantly inhibited the rate of transendothelial migration of monocyte cell lines. Direct involvement of ALCAM in transendothelial migration was evident from the robust inhibition of this process by ALCAM blocking antibodies. However, soluble recombinant ALCAM had no impact on monocyte migration or adhesion to endothelium. Localization of ALCAM specifically at cell-cell junctions in endothelial cells supported its role in transendothelial migration. This study is the first to localize ALCAM to endothelial cell junctions and demonstrate a functional relevance for co-expression of ALCAM by activated monocytes and endothelial cells.  相似文献   
19.
Synthetic oligodeoxynucleotides containing CpG motifs (CpG ODN) have been reported to induce antimycobacterial activity both in vitro and in vivo. The present study analyzes the signals leading to CpG ODN-induced antimicrobial activity in monocytes. In this context, CpG, but not GpC, ODN induced cytosolic Ca2+ influx of extracellular origin which, in turn, activated host phospholipase D (PLD). The production of CpG-induced PLD-dependent phosphatidic acid induced the maturation of phagolysosomes and intracellular mycobacterial growth inhibition. These results show the presence of an antimicrobial pathway in monocytes, mediated by Ca2+-dependent PLD which can be useful for the exploitation of novel anti-tuberculosis immunotherapy approaches.  相似文献   
20.
12/15-Lipoxygenases (LOXs) in monocytes and macrophages generate novel phospholipid-esterified eicosanoids. Here, we report the generation of two additional families of related lipids comprising 15-ketoeicosatetraenoic acid (KETE) attached to four phosphatidylethanolamines (PEs). The lipids are generated basally by 15-LOX in IL-4-stimulated monocytes, are elevated on calcium mobilization, and are detected at increased levels in bronchoalveolar lavage fluid from cystic fibrosis patients (3.6 ng/ml of lavage). Murine peritoneal macrophages generate 12-KETE-PEs, which are absent in 12/15-LOX-deficient mice. Inhibition of 15-prostaglandin dehydrogenase prevents their formation from exogenous 15-hydroxyeicosatetraenoic acid-PE in human monocytes. Both human and murine cells also generated analogous hydroperoxyeicosatetraenoic acid-PEs. The electrophilic reactivity of KETE-PEs is shown by their Michael addition to glutathione and cysteine. Lastly, both 15-hydroxyeicosatetraenoic acid-PE and 15-KETE-PE activated peroxisome proliferator-activated receptor-γ reporter activity in macrophages in a dose-dependent manner. In summary, we demonstrate novel peroxisome proliferator-activated receptor-γ-activating oxidized phospholipids generated enzymatically by LOX and 15-prostaglandin dehydrogenase in primary monocytic cells and in a human Th2-related lung disease. The lipids are a new family of bioactive mediators from the 12/15-LOX pathway that may contribute to its known anti-inflammatory actions in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号