首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2772篇
  免费   125篇
  国内免费   56篇
  2023年   65篇
  2022年   56篇
  2021年   88篇
  2020年   58篇
  2019年   77篇
  2018年   64篇
  2017年   59篇
  2016年   35篇
  2015年   64篇
  2014年   89篇
  2013年   129篇
  2012年   97篇
  2011年   94篇
  2010年   75篇
  2009年   111篇
  2008年   131篇
  2007年   135篇
  2006年   131篇
  2005年   89篇
  2004年   126篇
  2003年   90篇
  2002年   101篇
  2001年   67篇
  2000年   70篇
  1999年   66篇
  1998年   59篇
  1997年   50篇
  1996年   46篇
  1995年   62篇
  1994年   56篇
  1993年   47篇
  1992年   41篇
  1991年   50篇
  1990年   45篇
  1989年   49篇
  1988年   37篇
  1987年   24篇
  1986年   29篇
  1985年   22篇
  1984年   24篇
  1982年   23篇
  1981年   20篇
  1980年   14篇
  1979年   13篇
  1978年   17篇
  1977年   12篇
  1976年   9篇
  1973年   9篇
  1971年   8篇
  1970年   6篇
排序方式: 共有2953条查询结果,搜索用时 265 毫秒
131.
Summary With the use of immunocytochemistry, it was shown that both the supraoptic and paraventricular hypothalamic nuclei in humans contain at least two different neurophysins. These two human neurophysins are immunologically related to bovine neurophysin I and neurophysin II, respectively. One human neurophysin is associated with vasopressin, the other with oxytocin. Human vasopressin-neurophysin and oxytocin-neurophysin are located separately in two different types of neurons, which correspond respectively to the vasopressinergic and oxytocinergic neurons of both the supraoptic and paraventricular nuclei. The neurophysin of the human vasopressinergic suprachiasmatic neurons appears to be closely related to or identical with neurophysin of the vasopressinergic neurons of the human magnocellular hypothalamic nuclei.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   
132.
Summary The arrangement of first and second order neurons in an optic cartridge and the topographical relationships of the second order neurons within a cartridge and to groups of surrounding cartridges have been analyzed in the visual system of the bee, Apis mellifera, from light and electron microscope studies on Golgi preparations. At the level of the monopolar cell body layer, the nine retinula cell fibres of each ommatidium, the six short visual fibres arranged in a circle surrounding the three long visual fibres, become cartridges as a consequence of the appearance of the second order neurons (L-fibres) which join the R-fibre bundles. Two of the four different L-fibre types, L-1 and L-2, remain together in the centre of the cartridge throughout the lamina. The axons of the L-3 and L-4 fibres, however, have their position integrated into the circle formed by the endings of the short visual fibres. On the basis of further examination of light and especially electron microscopical Golgi material, the different L-fibres can be classified into four types which appear in each cartridge. The clear stratification in the first synaptic region (A, B and C) seems to be the best criterion for a morphological classification since such a classification necessarily also includes a functional basis. According to a naming system based on the position of the lateral processes, L-fibres with side branches in strata A, B and C are called L-1 fibres. Fibres with lateral processes in strata A and B are L-2 fibres; monopolar cell fibres with branches only in the second stratum B are L-fibres of type 3; and all monopolar cells with branches only in stratum C are called L-4 fibres. In addition to the branching pattern covering only the parent cartridge, two of the four fibre types (L-2 and L-4) have long collaterals reaching neighbouring cartridges: L-2 in stratum A and L-4 in stratum C. These collaterals presumably form a substrate for lateral interactions.  相似文献   
133.
Summary The fine structure of arcuate neurons of the arcuate nucleus, the ependymal tanycytes and the contact zone of the median eminence was examined following immobilization, an acute stress which significantly activated the hypothalamo-pituitary-adrenal (HPA) axis. Arcuate neurons of immobilized adult male hamsters displayed morphological indications of heightened activity; the number of lysosomes and dense core vesicles (80–120 nm) was increased. A markedly greater number of dense core vesicles was present in axon terminals of the contact zone of the mid-central median eminence and the ventral proximal stalk.Tanycytes of the median eminence exhibited an augmented number of electron dense bodies in both perikarya and end processes. These results indicate that the arcuate neurons, the axons of the contact zone, and the ependymal tanycytes of the hamster medial basal hypothalamus (MBH) may be involved in the response to immobilization.This work was supported by Program Project Grant #NS-11642  相似文献   
134.
Summary The magnocellular preoptic nucleus of fishes (Anguilla anguilla, Amiurus nebulosus, Cyprinus carpio, Carassius auratus, Ctenopharyngodon idella, Cichlasoma nigrofasciatum) has been studied by light and electron microscopy.Two kinds of neurons were found: a) large, electron-dense, Gomori-positive cells with moderate acetylcholinesterase (AChE) positivity which contain granulated vesicles of 1400 to 2200 Å (in average 1600 to 1800 Å), and b) small, strongly AChE-positive, electron-lucent neurons containing granulated vesicles of 900 to 1200 Å. The nerve cells are supplied with axo-somatic and axo-dendritic synapses. These are formed by axon terminals containing either 1. synaptic vesicles of 500 Å, or 2. synaptic vesicles of 500 Å and dense-core vesicles of 600 to 800 Å, or 3. synaptic vesicles of 600 Å and granulated vesicles of up to 1100 Å, or 4. synaptic vesicles of about 400 Å and granulated vesicles of up to 1800 Å. The presence of peptidergic and numerous other synapses shows the complexity of the organization and afferentation of the magnocellular preoptic nucleus.In the eel, both types of nerve cells form dendritic terminals within the cerebrospinal fluid (CSF). These CSF contacting dendrites are supplied with 9×2+0 cilia. In the other species investigated, only some large neurons build up intraventricular endings. The ependymofugal process of the CSF contacting neurons enters the preoptic-neurohypophysial tract.Perikarya of both the large and the small cells may give rise to single, paired or multiple 9×2+0 cilia extending into the intercellular space. The number of CSF contacting neurons is reciprocal to the number of perikarya with intercellular cilium. These latter cells may represent modified, more differentiated forms of the CSF contacting neurons. We think that atypical cilia protruding into the intercellular space may have the same significance for the intercellular fluid as the cilia of the intraventricular dendrites of the CSF contacting neurons for the CSF.Dedicated to Prof. Dr. W. Bargmann on the occasion of his 70th birthday.  相似文献   
135.
136.
C57/B1 mice were exposed during pregnancy (gestation days 0–19) to a 20 kHz magnetic field (MF). The asymmetric sawtooth-wave form magnetic field in the exposed racks had a flux density of 15 μT (peak to peak). After 19 days, the exposure was terminated, and the mice were housed individually under normal laboratory conditions. On postnatal day (PD) 1, PD21, and PD308, various neurochemical markers in the brains of the offspring were investigated and the brains weighed. No significant difference was found in the whole brain weight at PD1 or PD21 between exposed offspring and control animals. However, on PD308, a significant decrease in weight of the whole brain was detected in exposed animals. No significant differences were found in the weight of cortex, hippocampus, septum, or cerebellum on any of the sampling occasions, nor were any significant differences detected in protein-, DNA-level, nerve growth factor (NGF), acetylcholine esterase- (AChE), or 2′,3′-cyclic nucle-otide 3′-phosphodiesterase- (CNP; marker for oligodendrocytes) activities on PD21 in cerebellum. Cortex showed a more complex pattern of response to MF: MF treatment resulted in a decrease in DNA level and increases in the activities of CNP, AChE, and NGF protein. On PD308, the amount of DNA was significantly reduced in MF-treated cerebellum and CNP activity was still enhanced in MF-treated cortex compared to controls. Most of the effects of MF treatment during the embryonic period were similar to those induced by ionizing radiation but much weaker. However, the duration of the exposure required to elucidate the response of different markers to MF seems to be greater and effects appear later during development compared to responses to ionizing radiation. © 1995 Wiley-Liss, Inc.  相似文献   
137.
138.
139.
Induced pluripotent stem cells (iPSCs) hold promise to revolutionize studies of intracellular transport in live human neurons and to shed new light on the role of dysfunctional transport in neurodegenerative disorders. Here, we describe an approach for live imaging of axonal and dendritic transport in iPSC‐derived cortical neurons. We use transfection and transient expression of genetically‐encoded fluorescent markers to characterize the motility of Rab‐positive vesicles, including early, late and recycling endosomes, as well as autophagosomes and mitochondria in iPSC‐derived neurons. Comparing transport parameters of these organelles with data from primary rat hippocampal neurons, we uncover remarkable similarities. In addition, we generated lysosomal‐associated membrane protein 1 (LAMP1)‐enhanced green fluorescent protein (EGFP) knock‐in iPSCs and show that knock‐in neurons can be used to study the transport of endogenously labeled vesicles, as a parallel approach to the transient overexpression of fluorescently labeled organelle markers.  相似文献   
140.
The nervous system communicates with peripheral tissues through nerve fibres and the systemic release of hypothalamic and pituitary neurohormones. Communication between the nervous system and the largest human organ, skin, has traditionally received little attention. In particular, the neuro‐regulation of sebaceous glands (SGs), a major skin appendage, is rarely considered. Yet, it is clear that the SG is under stringent pituitary control, and forms a fascinating, clinically relevant peripheral target organ in which to study the neuroendocrine and neural regulation of epithelia. Sebum, the major secretory product of the SG, is composed of a complex mixture of lipids resulting from the holocrine secretion of specialised epithelial cells (sebocytes). It is indicative of a role of the neuroendocrine system in SG function that excess circulating levels of growth hormone, thyroxine or prolactin result in increased sebum production (seborrhoea). Conversely, growth hormone deficiency, hypothyroidism, and adrenal insufficiency result in reduced sebum production and dry skin. Furthermore, the androgen sensitivity of SGs appears to be under neuroendocrine control, as hypophysectomy (removal of the pituitary) renders SGs largely insensitive to stimulation by testosterone, which is crucial for maintaining SG homeostasis. However, several neurohormones, such as adrenocorticotropic hormone and α‐melanocyte‐stimulating hormone, can stimulate sebum production independently of either the testes or the adrenal glands, further underscoring the importance of neuroendocrine control in SG biology. Moreover, sebocytes synthesise several neurohormones and express their receptors, suggestive of the presence of neuro‐autocrine mechanisms of sebocyte modulation. Aside from the neuroendocrine system, it is conceivable that secretion of neuropeptides and neurotransmitters from cutaneous nerve endings may also act on sebocytes or their progenitors, given that the skin is richly innervated. However, to date, the neural controls of SG development and function remain poorly investigated and incompletely understood. Botulinum toxin‐mediated or facial paresis‐associated reduction of human sebum secretion suggests that cutaneous nerve‐derived substances modulate lipid and inflammatory cytokine synthesis by sebocytes, possibly implicating the nervous system in acne pathogenesis. Additionally, evidence suggests that cutaneous denervation in mice alters the expression of key regulators of SG homeostasis. In this review, we examine the current evidence regarding neuroendocrine and neurobiological regulation of human SG function in physiology and pathology. We further call attention to this line of research as an instructive model for probing and therapeutically manipulating the mechanistic links between the nervous system and mammalian skin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号