首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  国内免费   1篇
  2023年   2篇
  2020年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2004年   1篇
  1997年   1篇
  1979年   2篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
11.
Whether the red tide Mesodinium rubrum contains a permanent cryptophyte symbiont or whether it only sequesters chloroplasts from cryptophyte prey was addressed using electron microscopy and the dynamics of photosynthesis, chloroplasts and nuclei. Mesodinium rubrum contains a branched cryptophyte symbiont consisting of many chloroplasts, mitochondria, nucleomorphs, an endoplasmic reticulum and one nucleus. The volume of the symbiont constitutes 36% of the consortium and it is separated from its host by a single-cell membrane. The chloroplasts of Mesodium are larger and morphologically different from two Teleaulax species that served as prey. The symbiont nucleus is also much larger than Teleaulax nuclei. Although M. rubrum is functionally a phototroph, sustained growth beyond two to four generations requires ingestion of prey, but less than one prey cell per generation suffices for maximum growth. This suggests that either the ciliate or its symbiont needs an essential growth factor for continuous growth.  相似文献   
12.
“Phototrophic”Dinophysis Ehrenberg species are well known to have chloroplasts of a cryptophyte origin, more specifically of the cryptophyte genus complex Teleaulax/Geminigera. Nonetheless, whether chloroplasts of “phototrophic”Dinophysis are permanent plastids or periodically derived kleptoplastids (stolen chloroplasts) has not been confirmed. Indeed, molecular sequence data and ultrastructural data lead to contradictory interpretations about the status of Dinophysis plastids. Here, we used established cultures of D. caudata strain DC‐LOHABE01 and M. rubrum strain MR‐MAL01 to address the status of Dinophysis plastids. Our approach was to experimentally generate D. caudata with “green” plastids and then follow the ingestion and fate of “reddish‐brown” prey plastids using light microscopy, time‐lapse videography, and single‐cell TEM. Our results for D. caudata resolve the apparent discrepancy between morphological and molecular data by showing that plastids acquired when feeding on M. rubrum are structurally modified and retained as stellate compound chloroplasts characteristic of Dinophysis species.  相似文献   
13.
The cryptophyte Teleaulax amphioxeia is a source of plastids for the ciliate Mesodinium rubrum and both organisms are members of the trophic chain of several species of Dinophysis. It is important to better understand the ecology of organisms at the first trophic levels before assessing the impact of principal factors of global change on Dinophysis spp. Therefore, combined effects of temperature, irradiance, and pH on growth rate, photosynthetic activity, and pigment content of a temperate strain of T. amphioxeia were studied using a full factorial design (central composite design 23*) in 17 individually controlled bioreactors. The derived model predicted an optimal growth rate of T. amphioxeia at a light intensity of 400 μmol photons · m−2 · s−1, more acidic pH (7.6) than the current average and a temperature of 17.6°C. An interaction between temperature and irradiance on growth was also found, while pH did not have any significant effect. Subsequently, to investigate potential impacts of prey quality and quantity on the physiology of the predator, M. rubrum was fed two separate prey: predator ratios with cultures of T. amphioxeia previously acclimated at two different light intensities (100 and 400 μmol photons · m−2 s−1). M. rubrum growth appeared to be significantly dependent on prey quantity while effect of prey quality was not observed. This multi-parametric study indicated a high potential for a significant increase of T. amphioxeia in future climate conditions but to what extent this would lead to increased occurrences of Mesodinium spp. and Dinophysis spp. should be further investigated.  相似文献   
14.
Myrionecta rubra and Mesodinium pulex are among the most commonly encountered planktonic ciliates in coastal marine and estuarine regions throughout the world. Despite their widespread distribution, both ciliates have received little attention by taxonomists. In order to better understand the phylogenetic position of these ciliates, we determined the SSU rRNA gene sequence from cultures of M. rubra and M. pulex. Partial sequence data were also generated from isolated cells of M. rubra from Chesapeake Bay. The M. rubra and M. pulex sequences were very divergent from all other ciliates, but shared a branch with 100% bootstrap support. Both species had numerous deletions and substitutions in their SSU rRNA gene, resulting in a long branch for the clade. This made the sequences prone to spurious phylogenetic affiliations when using simple phylogenetic methods. Maximum likelihood analysis placed M. rubra and M. pulex on the basal ciliate branch, following removal of ambiguously aligned regions. Fluorescent in situ hybridization probes were used with confocal laser scanning microscopy to confirm that these divergent sequences were both expressed in the cytoplasm and nucleolus of M. ruisra and M. pulex. We found that our sequence data matched several recently discovered unidentified eukaryotes in Genbank from diverse marine habitats, all of which had apparently been misattributed to highly divergent amoeboid organisms.  相似文献   
15.
The well-known ciliate, Mesodinium Stein, 1863, is of great importance to marine microbial food webs and is related to the "red tides". However, it is possibly one of the most confusing ciliate taxa in terms of its systematic position: either the morphological or the molecular data excluded it from all the other known assemblages or groups. In the current work, the sequences of small subunit ribosomal RNA(SSU rR NA) genes for all isolates available are analysed and an examination of the secondary structure patterns of related groups is carried out. The results indicate that(1) Mesodinium invariably represents a completely separated and isolated clade positioned between two subphyla of ciliates with very deep branching, which indicates that they should be a primitive or ancestral group for the subphylum Intramacronucleata;(2) the secondary structure of the SSU r RNA of Mesodinium species is unusual in that, while the secondary structure of V4 in Mesodinium sp. has the deletions common to all litostome ciliates, it has more extensive deletions in helix E238 and a longer helix E231;(3) combining the phylogenetic and morphological information, we suggest establishing Mesodiniea cl. nov., including the order Mesodiniida Grain, 1994, belonging to the subphylum Intramacronucleata.  相似文献   
16.
17.
Mesodinium is a globally distributed ciliate genus forming frequent and recurrent blooms in diverse marine habitats. Here, we describe a new marine species, Mesodinium coatsi n. sp., originally isolated from interstitial water of surface sand samples collected at Mohang Beach, Korea. The species was maintained under a mixotrophic growth condition for longer than 1 yr by providing a cryptomonad, Chroomonas sp., as the sole prey. Cell morphology and subcellular structure were examined by light microscopy, scanning, and transmission electron microscopy, and molecular phylogeny was inferred from nuclear‐encoded 18S rDNA sequence data. Like other Mesodinium species, M. coatsi consisted of two hemispheres separated by two types of kinetids, and had tentacles located at the oral end of the cell. Several food vacuoles were observed in the cytoplasm, and partially digested prey cells sometimes existed in food vacuoles. Kinetids and the associated accessory structures were quite similar to those previously reported, but M. coatsi was differentiated from other marine Mesodinium species by ultrastructural characters of the dikinetids, polykinetids, and tentacles. We also provided a detailed illustration of infraciliature. Molecular phylogeny revealed that M. coatsi and Mesodinium chamaeleon were closely related to each other.  相似文献   
18.
ABSTRACT. The interdependency of Dinophysis spp., Mesodinium rubrum and Teleaulax spp. has occupied scientists in molecular and ecological domains in recent years. Current knowledge about the predator–prey relationships is based on laboratory investigations. Records on interactions in nature are limited, even though it is known that Dinophysis acuminata and M. rubrum form population maxima in thin layers associated with thermal stratification. We studied the vertical co‐occurrence of these taxa in a stratified coastal inlet in Åland, in the Northern Baltic Sea, SW Finland. Vertical profiles were sampled monthly in the summer of 2008 and observations on diurnal migrational patterns of all species were conducted in September 2008. The population maximum of D. acuminata was almost totally confined to thin layers where the depth maximum of M. rubrum was present. However, this pattern was only observed early in the morning or at noon. The population maxima of M. rubrum and Teleaulax spp. overlapped at noon. Dinophysis acuminata and Teleaulax spp. were restricted to the upper 9 m but M. rubrum was found down to 20 m depth. This study offers circumstantial evidence for the interdependency between the three taxa in nature.  相似文献   
19.
The dinoflagellate Amylax triacantha is known to retain plastids of cryptophyte origin by engulfing the mixotrophic ciliate Mesodinium rubrum, itself a consumer of cryptophytes. However, there is no information on the fate of the prey's organelles and the photosynthetic performance of the newly retained plastids in A. triacantha. In this study, we conducted a starvation experiment to observe the intracellular organization of the prey's organelles and temporal changes in the photosynthetic efficiency of acquired plastids in A. triacantha. The ultrastructural observations revealed that while the chloroplast‐mitochondria complexes and nucleus of cryptophyte were retained by A. triacantha, other ciliate organelles were digested in food vacuoles. Acquired plastids were retained in A. triacantha for about 1 mo and showed photosynthetic activities for about 18 d when measured by a pulse‐amplitude modulation fluorometer.  相似文献   
20.
ABSTRACT. Cyclotrichiids are of ecological and evolutionary interest by virtue of their importance in red tide formation, their highly divergent small subunit (SSU) ribosomal RNA (rRNA) genes, kleptoplastidy, and utility as indicators of eutrophication. However, only seven strains have had their SSU rRNA genes sequenced and their environmental diversity and distribution are largely unknown. We probed 67 globally dispersed freshwater column/sediment and soil DNA samples (eDNAs) and constructed 24 environmental gene libraries using polymerase chain reaction primers specific to an uncharacterised cyclotrichiid subgroup. We reveal a novel, globally ubiquitous freshwater clade comprising 25 genetically distinct SSU ribosomal DNA (rDNA) sequences (SSU-types). Some identical SSU-types were detected at globally widely distributed sites. The SSU-types form four distinct phylogenetic clusters according to marine or non-marine provenance, suggesting at least one major marine–freshwater evolutionary transition within the cyclotrichiids. We used the same primers to sample intensively 18 sampling points in 13 closely situated lakes, each characterised by 14 environmental variables, and showed that molecular detection or non-detection of cyclotrichiids was most significantly influenced by levels of total phosphorus, dissolved organic carbon, and chlorophyll a . Within the subset of lakes in which cyclotrichiids were detected, closely related SSU-types differed in their ecological preferences to pH, total phosphorus, and sample depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号