首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1025篇
  免费   30篇
  国内免费   1篇
  2023年   17篇
  2022年   35篇
  2021年   54篇
  2020年   66篇
  2019年   39篇
  2018年   38篇
  2017年   24篇
  2016年   30篇
  2015年   69篇
  2014年   110篇
  2013年   90篇
  2012年   65篇
  2011年   63篇
  2010年   50篇
  2009年   71篇
  2008年   72篇
  2007年   51篇
  2006年   33篇
  2005年   27篇
  2004年   30篇
  2003年   10篇
  2002年   4篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有1056条查询结果,搜索用时 15 毫秒
11.
The postnatal skeleton undergoes growth, modeling, and remodeling. The human skeleton is a composite of diverse tissue types, including bone, cartilage, fat, fibroblasts, nerves, blood vessels, and hematopoietic cells. Fracture nonunion and bone defects are among the most challenging clinical problems in orthopedic trauma. The incidence of nonunion or bone defects following fractures is increasing. Stem and progenitor cells mediate homeostasis and regeneration in postnatal tissue, including bone tissue. As multipotent stem cells, skeletal stem cells (SSCs) have a strong effect on the growth, differentiation, and repair of bone regeneration. In recent years, a number of important studies have characterized the hierarchy, differential potential, and bone formation of SSCs. Here, we describe studies on and applications of SSCs and/or mesenchymal stem cells for bone regeneration.  相似文献   
12.
13.
Mesenchymal stem cells (MSCs) are a heterogeneous population that can be isolated from various tissues, including bone marrow, adipose tissue, umbilical cord blood, and craniofacial tissue. MSCs have attracted increasingly more attention over the years due to their regenerative capacity and function in immunomodulation. The foundation of tissue regeneration is the potential of cells to differentiate into multiple cell lineages and give rise to multiple tissue types. In addition,the immunoregulatory function of MSCs has provided insights into therapeutic treatments for immune-mediated diseases. DNA methylation and demethylation are important epigenetic mechanisms that have been shown to modulate embryonic stem cell maintenance, proliferation, differentiation and apoptosis by activating or suppressing a number of genes. In most studies, DNA hypermethylation is associated with gene suppression, while hypomethylation or demethylation is associated with gene activation. The dynamic balance of DNA methylation and demethylation is required for normal mammalian development and inhibits the onset of abnormal phenotypes. However, the exact role of DNA methylation and demethylation in MSC-based tissue regeneration and immunomodulation requires further investigation. In this review, we discuss how DNA methylation and demethylation function in multi-lineage cell differentiation and immunomodulation of MSCs based on previously published work. Furthermore, we discuss the implications of the role of DNA methylation and demethylation in MSCs for the treatment of metabolic or immune-related diseases.  相似文献   
14.
15.
Cytotechnology - Trehalose is a nontoxic disaccharide and a promising cryoprotection agent for medically applicable cells. In this study, the efficiency of combining trehalose with reversible...  相似文献   
16.
Inflammatory periodontal disease known as periodontitis is one of the most common conditions that affect human teeth and often leads to tooth loss. Due to the complexity of the periodontium, which is composed of several tissues, its regeneration and subsequent return to a homeostatic state is challenging with the therapies currently available. Cellular therapy is increasingly becoming an alternative in regenerative medicine/dentistry, especially therapies using mesenchymal stem cells, as they can be isolated from a myriad of tissues. Periodontal ligament stem cells (PDLSCs) are probably the most adequate to be used as a cell source with the aim of regenerating the periodontium. Biological insights have also highlighted PDLSCs as promising immunomodulator agents. In this review, we explore the state of knowledge regarding the properties of PDLSCs, as well as their therapeutic potential, describing current and future clinical applications based on tissue engineering techniques.  相似文献   
17.

Background

Wound healing is a complex biologic process that involves the integration of inflammation, mitosis, angiogenesis, synthesis, and remodeling of the extracellular matrix. However, some wounds fail to heal properly and become chronic. Although some simulated chronic wound models have been established, an efficient approach to treat chronic wounds in animal models has not been determined. The aim of this study was to develop a modified rat model simulating the chronic wounds caused by clinical radiation ulcers and examine the treatment of chronic wounds with adipose-derived stem cells.

Results

Sprague–Dawley rats were irradiated with an electron beam, and wounds were created. The rats received treatment with adipose-derived stem cells (ASCs), and a wound-healing assay was performed. The wound sizes after ASC treatment for 3 weeks were significantly smaller compared with the control condition (p < 0.01). Histological observations of the wound edge and immunoblot analysis of the re-epithelialization region both indicated that the treatment with ASCs was associated with the development of new blood vessels. Cell-tracking experiments showed that ASCs were colocalized with endothelial cell markers in ulcerated tissues.

Conclusions

We established a modified rat model of radiation-induced wounds and demonstrated that ASCs accelerate wound-healing.  相似文献   
18.
The melanocortin (MC) receptor type-1 (MC1-R) is the only one of the five MC receptor subtypes expressed in human adipose tissue explants, human mesenchymal stem cells (MSCs), and MSC-derived adipocytes. Following our recent expression studies (Obesity 2007, 15, 40–49), we now investigated the functional role of MC1-R in these tissues and cells to deduce the coupling state of MC1-R to intracellular output signals in human fat cells and tissue. Expression of MC1-R by undifferentiated and differentiated MSCs was quantified by real-time TaqMan PCR. Intracellular output signals (cAMP, lipolysis, secretion of IL-6, IL-10, and TNF-α), as well as effects on the metabolic rate and proliferation of human MSCs were analyzed by standard assays, exposing undifferentiated and differentiated MSCs and, in part, human adipose tissue explants to the potent MC1-R agonist, [Nle4, D-Phe7]-α -MSH (NDP-MSH). This agonist induced a weak cAMP signal in MSC-derived adipocytes. However, it did not affect lipolysis in these cells or in adipose tissue explants, nor did it modulate cytokine release and mRNA expression of IL-6, IL-8, and TNF-α upon LPS stimulation. In undifferentiated MSCs, NDP-MSH did not alter the metabolic rate, but it showed a significant antiproliferative effect. Therefore, it appears that MC1-R–effector coupling in (differentiated) human adipocytes is too weak to induce a regulatory effect on lipolysis or inflammation; by contrast, MC1-R stimulation in undifferentiated MSCs induces an inhibitory signal on cell proliferation.  相似文献   
19.
Despite many advantages of mesenchymal stem cells (MSCs) that make them suitable for cell therapy purposes, their therapeutic application has been limited due to their susceptibility to several stresses (e.g., nutrient-poor environment, oxidative stress, and hypoxic and masses of cytotoxic factors) to which they are exposed during their preparation and following transplantation. Hence, reinforcing MSCs against these stresses is a challenge for both basic and clinician scientists. Recently, much attention has been directed toward equipping MSCs with cytoprotective factors to strengthen them against unfavorable microenvironments. Here, we engineered MSCs with lipocalin 2 (Lcn2), a cytoprotective factor that is naturally induced following exposure of cells to stresses imposed by the microenvironment. Lcn2 overexpression not only did not interfere with the multidifferentiation capacity of the MSCs but also granted many protective properties to them. Lcn2 potentiated MSCs to withstand oxidative, hypoxia, and serum deprivation (SD) conditions via antagonizing their induced cytotoxicity and apoptosis. Adhesion rate of MSCs to coated culture plates was also enhanced by Lcn2 overexpression. In addition, Lcn2 induced antioxidants and upregulated some growth factors in MSCs. Our findings suggested a new strategy for prevention of graft cell death in MSC-based cell therapy.  相似文献   
20.
Because of ethical and scientific controversy, the utilization of fetal bovine serum (FBS) for cell culture medium must be minimized. This study develops porcine platelet-rich plasma (P-PRP) as a FBS substitute for human mesenchymal stem cell (hMSC) cultivation. Concentrating porcine blood by serial centrifugation to obtain P-PRP leads to activation by different agonist combinations to stimulate the secretion of growth factors. The concentration of growth factor in P-PRP is significantly increased by activation (p < 0.05). The concentration of PDGF, KGF and TGF-β in activated P-PRP is significantly higher than that in FBS. Design-expert was used to decide whether Co−T+Ca−, Co+T−Ca−, and Co+T+Ca− are optimal agonist formulations. MSC cultivation shows that the attachment rate, proliferation rate and viability of P-PRP supplemented media are significantly higher than those for FBS-supplemented and commercial media (p < 0.05). The results demonstrate that P-PRP is an optimal FBS substitute that supports in vitro h-MSCs expansion for subsequent biomedical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号